目录
统计学实际上是一个工具,用于检验想法。
1、研究背景与原始数据
研究的问题:害羞以及其他个性特征与暴力行为是否可能存在一定的联系;
原始数据:实际分数或其他测量数据。本次案例数据来自于突然杀人犯研究的19名狱犯的数据,其中突然杀人犯组有10名狱犯,杀人惯犯组有9名狱犯。
类别 | 序号 | 羞怯 | 女性化——男性化 BSRI | 自我过度控制 MMPI |
突然杀人犯 | 1 | 是 | 5 | 17 |
2 | 否 | -1 | 17 | |
3 | 是 | 4 | 13 | |
4 | 是 | 61 | 17 | |
5 | 是 | 19 | 13 | |
6 | 是 | 41 | 19 | |
7 | 否 | -29 | 14 | |
8 | 是 | 23 | 9 | |
9 | 是 | -13 | 11 | |
10 | 是 | 5 | 14 | |
杀人惯犯 | 11 | 否 | -12 | 15 |
12 | 否 | -14 | 11 | |
13 | 是 | -33 | 14 | |
14 | 否 | -8 | 10 | |
15 | 否 | -7 | 16 | |
16 | 否 | 3 | 11 | |
17 | 否 | -17 | 6 | |
18 | 否 | 6 | 9 | |
19 | 否 | -10 | 12 |
2、提出假设
一般数据分析之前会提出假设,然后通过数据分析队假设进行验证,基于本数据提出的假设:
1、与杀人惯犯相比,害羞更可能是突然杀人犯的特性,杀人者先前没有暴力行为的历史,而杀人惯犯先前有暴力犯罪行为的记录。
2、突然杀人犯比杀人惯犯更能控制自己的冲动。
3、与惯犯相比,突然杀人犯的被动性和依赖性表现为更多的女性化和双性化的特征。
2.1 数据收集工具
研究者从这两类参与者身上收集三类数据:羞怯分数、性别角色认同分数和冲动控制分数。
使用斯担福羞怯调查、贝姆性别角色问卷、明尼苏达多项人格测试。
2.2 研究者预期
突然杀人犯更加具有:
1)经常在羞怯调查中描述自己的羞怯的;
2)在性别角色量表中选择更多的女性化特征;
3)自我过度控制的分数更高。
3、假设检验
假设检验第一步是使用描述性统计找出具有差异的变量,然后通过推断统计验证其差异性是否是随机变量引起的。
3.1 描述统计
定义:在客观上、统一的方法基础上使用数学程序描述数值数据的不同方面。
1、频次分布:总结每类分数出现的频次。
3.1.1 集中趋势度量
作用:得出一个典型分数指标。常用指标。
1、众数:一个比所有其他数值出现次数更多的数值,收极端值影响,所以常常用处最小;
2、中数:将数据中高分的一半与低分的一半区分开来;
3、平均数:所有数相加除以样本数。
3.1.2 离散性的度量
作用:描述围绕集中趋势度量周围的分数分布情况的统计量,低离散性表示数据越平稳,高离散性表示数据波动越大。
度量指标:
1、全距:频次分布中最高值与最低值之前的差值,只考虑极端值;
2、标准差:将所有的数据考虑进来考虑离散性,代表所有分数与其平均数之间的平均差值。当标准差很小时,平均数是整个分布的一个很好的代表值,而标准差很大时,它对整组数据代表性减小;
3、相关系数:它是关于两个变量(如身高与体重或者性别角色得分与自我过控得分)之间相关程度和性质的度量。在突然杀人犯中,性别角色得分与过控分数之间的相关(以r表示)为+0.35。因此,这两者之间是正相关的。
3.2 推断统计
描述统计可以得出数据之间确实存在差异。但是差异产生是否有意义或者研究的结果是否是随机擦产生的,还需要推断统计来进行研究。比如:如果我们能够对突然杀人犯和杀人惯犯的总体进行测量,所得到的平均值和标准差会和我们利用小样本研究所得到的结果相同吗?
定义:利用概率论做出可靠的推论,什么样的结果可能仅仅由于随机变量产生。
1、正态曲线(正态分布):推断统计的底层理论支持;
2、统计显著性:显著差异(一般为5%,当随机因素导致差异的概率不足5%时,接受这个差异为真)。
比如在本案例中,使用t检验来考察突然杀人犯与惯犯的性别角色得分均值之间是否有显著差异。计算两个均值之间的差异作为这些均值之间离散性函数来进行处理,如果不存在差异的话,获得t值概率很小,不足5%,因此这种差异在统计上是显著的。
参考文献:
1、心理学与生活