题目:小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100。但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数)。没多久,他就得到另一组连续正数和为100的序列:18,19,20,21,22。现在把问题交给你,你能不能也很快的找出所有和为S的连续正数序列?Good Luck!
输出描述:
输出所有和为S的连续正数序列。序列内按照从小至大的顺序,序列间按照开始数字从小到大的顺序
因为序列是连续的正数序列,所以公差为1。设序列和为sum,长度为n(n>1)的话,sum/n就是序列的平均值。这个平均值也是序列的中间值。
如果n是奇数,序列的中间值就是序列的平均值,n满足:
(n & 1) == 1 && (sum % n) ==0
如果n是偶数,序列的平均值是中间两个数的平均值,因为公差是1,所以平均值为X.5,即sum/n=X.5,sum=nX+0.5n,sum%n = (nX+0.5n)%n = 0.5n,即n满足:
2 * (sum % n) == n
由于以1开始的正整数序列前n项和为n(n+1)/2,所以最多只需要判断n从sqrt(2*sum)到2的情况,时间复杂度为logN。
代码:
vector<vector<int> > FindContinuousSequence(int sum) {
vector<vector<int> > results;
if(sum < 3) return results;
int n = sqrt(2 * sum);
while(n >= 2){
if( ((n & 1)== 1 && (sum % n)== 0) ||
(2 * (sum % n) == n) ){
vector<int> res;
int begin = sum/n - (n-1)/2;
//int begin = (2*sum/n - (n-1))/2;//n为偶数的情况,sum/n和(n-1)/2都被吞了0.5,所以差不变,这里可以不用先乘以2再除以2
//int end = (2*sum/n + (n-1))/2;//n为偶数的情况,和被吞了1,所以先乘以2再除以2防止0.5被吞掉
for(int i=0;i<n; ++begin,++i){//可以直接利用个数为n
res.push_back(begin);
}
results.push_back(res);
}
--n;
}
return results;
}