参考 雷霄骅https://blog.csdn.net/leixiaohua1020/article/list/28

1请参考:https://blog.csdn.net/leixiaohua1020/article/details/11694369

 全参考视频质量评价方法(PSNR,SSIM)以及相关数据库

主观评价算法的数据,可直接导入到Matlab中使用:

http://sse.tongji.edu.cn/linzhang/IQA/IQA.htm

Live数据库:http://live.ece.utexas.edu/research/Quality/

请参考:https://blog.csdn.net/leixiaohua1020/article/details/12847395

hilippe Hanhart等人在论文《Subjective quality evaluation of the upcoming HEVC video compression standard》中对新一代视频编码标准HEVC (H.265) 做了主观质量评价以及客观质量评价试验。

其实就是为了验证HEVC比H264好,无论是主观还是客观,都要好

2请参考:https://blog.csdn.net/leixiaohua1020/article/details/12883747

H.264 视频质量评价方法 (基于视频内容) 

ichal Ries等人在论文《Content Based Video Quality Estimation for H.264/AVC Video Streaming》中,描述了一种基于视频内容的视频质量评价方法。有一定的参考价值,在此记录一下。

该质量评价方法的特别之处在于,根据视频内容的复杂程度将视频分成了几类,每种类别分别使用不同的模型系数。而一般的视频质量评价方法通常只有一个模型以及一套固定的系数。

3请参考:https://blog.csdn.net/leixiaohua1020/article/details/12858773

基于HEVC的UHD(超高清4K)视频质量评价

Sung-Ho Bae等人在论文《Assessments of Subjective Video Quality on HEVC-Encoded 4K-UHD Video for Beyond-HDTV Broadcasting Services》中,对基于HEVC编码的4K超高清视频序列进行了主观质量评价和客观质量评价。这在目前来说还是比较超前的。在此记录一下其实验过程以及实验结论。

选择序列的过程

选择序列的过程如下图所示。一共对36个测试序列进行筛选。计算Ct(时间复杂度)以及Cs(空间复杂度)。以Cs为横坐标,Ct为纵坐标,散点图如下图所示。

 

4请参考:https://blog.csdn.net/leixiaohua1020/article/details/12856087

         和:https://blog.csdn.net/leixiaohua1020/article/details/12872803

G. Cermak在论文《The Relationship Among Video Quality, Screen Resolution, and Bit Rate》中,研究了视频质量,分辨率以及码率之间的关系。这篇文章很有参考价值,在此记录一下。

通过这个图,我们可以得到不同分辨率的视频达到某种质量的时候,分别需要什么样的码率。比如说,如果需要视频的MOS值为达到4(满分为5),那么1920x1080分辨率的序列需要约7000kbps的码率,640x480分辨率的序列需要约1900kbps的码率,352x288分辨率的序列需要约800kbps的码率。

B. Belmudez等人在论文《An approach for modeling the effects of video resolution and size on the perceived visual quality》中,研究了视频质量,分辨率,码率之间的关系。整篇论文内容较长,在此摘录其部分实验数据。

可见在低码率的情况下,小分辨率的视频质量较好(其实这是个众所周知的结论,= =),还有很多在论文中。。。。

5请参考:https://blog.csdn.net/leixiaohua1020/article/details/12871691

 

H.264视频质量评价算法(基于偏最小二乘法回归)

Zhiyuan Shi等人(这是中国人写的,但是我没看见中文论文,厦门大学的)在论文《Research on Quality Assessment Metric Based on H.264/AVC Bitstream》中,提出了一种使用偏最小二乘法回归(PLSR)计算得出的视频质量评价模型。模型还是挺有参考价值的,在此记录一下。

经计算,新提出的模型的皮尔逊相关系数为0.95,高于C. Keimel等人提出的模型

请参考:https://blog.csdn.net/leixiaohua1020/article/details/12857451

基于运动特征的视频质量评价方法(基于H.264)

Michal Ries等人在论文《Motion Based Reference-Free Quality Estimation for H.264/AVC Video Streaming》中提出了一种基于运动特征的视频质量评价方法。不同于大部分基于QP的视频质量评价方法以及基于内容的视频质量评价方法,该方法很有新意,在此记录一下。

6请参考:https://blog.csdn.net/leixiaohua1020/article/details/12685917

       和:https://blog.csdn.net/leixiaohua1020/article/details/12854021

en-Fu Ou等人在论文《MODELING THE IMPACT OF FRAME RATE ON PERCEPTUAL QUALITY OF VIDEO》中研究了帧率对人眼主观感受的影响。他们使用了6种内种不同的序列进行了测试,每种内容包含两个分辨率:CIF(352×288)和QCIF(176×144)。他们的实验结果如下图所示:

通过该图我们可以看出,当帧率大于15帧的时候,人眼的主观感受差别不大,基本上都处于较高的水平。而帧率小于15帧以后,人眼的主观感受会急剧下降。换句话说,人眼会立刻感受到画面的不连贯性。因此可以认为15帧是一个临界值。视频的帧率不宜小于15帧。由图可见,帧率对视频质量的影响根据视频内容的不同而不同。视频内容越复杂,对帧率的要求越高。比如说“football”就是一个运动较复杂的视频序列,可见在同等视频质量的情况下,它需要更高的帧率。而“Akiyo”内容则是一个新闻女主播在播新闻,画面内容简单,在较低的帧率下也能获得较高的视频质量。

Quan Huynh-Thu等人在论文《PERCEIVED QUALITY OF THE VARIATION OF THE VIDEO TEMPORAL RESOLUTION FOR LOW BIT RATE CODING》中研究了视频帧率对人眼主观感受的影响。在此记录一下其关键数据。

其实验结论和Yen-Fu Ou等人在论文《MODELING THE IMPACT OF FRAME RATE ON PERCEPTUAL QUALITY OF VIDEO》中的很相似。之前已经做过分析:http://blog.csdn.net/leixiaohua1020/article/details/12685917

7请参考:https://blog.csdn.net/leixiaohua1020/article/details/12854597

Rui Gan等人(看名字来说应该是中国人,机构写的Sun Yat-sen University应该是中山大学,但是很不幸没有找到相应的中文论文)在论文《Using LIRe to Implement Image Retrieval System Based on Multi-Feature Descriptor》中,测试了开源基于内容的图像检索类库LIRe的各种图像特征的性能。在此记录一下以作参考。

这里再提一下LIRe的简介:LIRE(Lucene Image REtrieval)提供一种的简单方式来创建基于图像特性的Lucene索引。利用该索引就能够构建一个基于内容的图像检索(content- based image retrieval,CBIR)系统,来搜索相似的图像。LIRE使用的特性都取自MPEG-7标准: ScalableColor、ColorLayout、EdgeHistogram,目前已经支持其他更多的特性。此外该类库还提供一个搜索该索引的方法。

7请参考:https://blog.csdn.net/leixiaohua1020/article/details/12851153

视频帧率和分辨率对QoE的影响

Thomas Zinner等人在《Impact of Frame Rate and Resolution on Objective QoE Metrics》(QoMEX 2010)论文中,研究了视频帧率和分辨率对QoE的影响。在此摘录出其中重要的数据,很有参考价值,以作备忘。

首先,该论文提出了影响视频QoE的三个因素:分辨率,帧率,图像质量。如图所示。

8请参考:https://blog.csdn.net/leixiaohua1020/article/details/12685297

视频质量评价方法:VQM

如何确定一个视频质量的好坏一直以来都是个棘手的问题。目前常用的方法就是通过人眼来直接观看,但是由于人眼的主观性及观看人员的单体差异性,对于同样的视频质量,不同的人的感受是不一样的。为此多个研究机构提出了视频质量客观测试方法,即利用机器或程序来评价视频质量的方法。本文正是要介绍一下其中的一种方法:VQM,并且总结了一些有关VQM视频质量评价方法的资料。VQM方法给出的客观分数比较符合主观感受,属于比较好的一种质量评价算法。

由图可见,VQM客观分数和人眼主观感受(DMOS)之间是线性关系的。

9请参考:https://blog.csdn.net/leixiaohua1020/article/details/12564709

开源视频质量评价工具: IQA

mage Quality Assessment (IQA)是一个快速,精确,可靠的测量视频/图像质量的基于C的库。

它实现了很多流行的算法比如 MS-SSIM, SIMM, MSE 和 PSNR。

其提供的方法在iqa.h中,如下所示:

10请参考:https://blog.csdn.net/leixiaohua1020/article/details/11898137

Matlab的曲线拟合工具箱CFtool使用简介

请参考:https://blog.csdn.net/leixiaohua1020/article/details/11729257

视频客观质量评价工具:MSU Video Quality Measurement Tool

MSU Video Quality Measurement Tool(msu vqmt)是莫斯科国立大学(Moscow State University)的Graphics and Media Lab制作的一款客观视频质量评价程序。它提供了多种全参考视频质量评价方法(对比两个视频)和无参考视频质量评价方法(分析一个视频)。

11请参考:https://blog.csdn.net/leixiaohua1020/article/details/11729289

全参考客观视频质量评价方法 (MSE, PSNR,SSIM)原理

12请参考:https://blog.csdn.net/leixiaohua1020/article/details/11729223

开源视频质量评价工具: Evalvid

Evalvid是一个对在真实或模拟的网络里传输的视频进行质量评价的框架和工具集。除了底层网络的QoS参数的测量,如丢包率,延迟,抖动,Evalvid还提供标准的视频质量评价算法如PSNR和SSIM。它视频编码方面支持H.264,MPEG-4和H.263。音频编码方面支持AAC。Evalvid是开源的,由jirka klaue编写。

13请参考:https://blog.csdn.net/leixiaohua1020/article/details/9056443

视频特性TI(时间信息)和SI(空间信息)的计算工具:TIandSI

SI表征一帧图像的空间细节量。空间上越复杂的场景,SI值越高。

TI表征视频序列的时间变化量。运动程度较高的序列通常会有更高的TI值。

SI计算方法:对第n帧视频进行Sobel滤波,然后对滤波后图像计算标准差。选这些帧中的最大值为SI。

TI计算方法:求n与n-1帧图像的帧差,然后对帧差图像计算标准差。选这些帧中的最大值为TI。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值