HDU3823 Prime Friend

版权声明:希望和大家共同学习,有问题烦请指出,苦涩脸。 https://blog.csdn.net/sinat_39688622/article/details/79949643

Prime Friend

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3914    Accepted Submission(s): 810


Problem Description
Besides the ordinary Boy Friend and Girl Friend, here we define a more academic kind of friend: Prime Friend. We call a nonnegative integer A is the integer B’s Prime Friend when the sum of A and B is a prime.
So an integer has many prime friends, for example, 1 has infinite prime friends: 1, 2, 4, 6, 10 and so on. This problem is very simple, given two integers A and B, find the minimum common prime friend which will make them not only become primes but also prime neighbor. We say C and D is prime neighbor only when both of them are primes and integer(s) between them is/are not.
 

Input
The first line contains a single integer T, indicating the number of test cases.
Each test case only contains two integers A and B.

Technical Specification

1. 1 <= T <= 1000
2. 1 <= A, B <= 150
 

Output
For each test case, output the case number first, then the minimum common prime friend of A and B, if not such number exists, output -1.
 

Sample Input
2
2 4
3 6
 

Sample Output
Case 1: 1
Case 2: -1

   

#没写过素数表,在微信上看见这个题的解题思路,先模仿写了素数表,后面的解题代码都类似 
 题意:  a+x b+x 满足都是素数,之间不能有素数存在  所以 isprimes[i]>=a&&isprimes[i+1]>=b 限制了这个条件的数据 反其道而行之
/*
    HDU 3823
*/
#include <iostream>
#include <math.h>
#include <string.h>
#include <stdio.h>
typedef long long ll;
using namespace std;
const int max_value = 2e7;
static bool is_prime[max_value+1];
static int isprimes[max_value];

using namespace std;

int _getprimeTable()
{
    int primesSize = 0;
    memset(is_prime,true,sizeof(is_prime));
    int t = sqrt((double)max_value)+1;
    for(ll i = 2; i <= t; i++)
    {
        if(is_prime[i])
        {
            for(ll j = 2; j <= max_value/i; j++)
            {
                is_prime[i*j]=false;
            }
        }
    }
    for(ll i = 2; i<=max_value; i++)
    {
        if(is_prime[i])
        {
            isprimes[primesSize++] = i;
        }
    }
    return primesSize;
}
int main()
{
    int len = _getprimeTable();
    int n,isprime,count_primes = 1;
    scanf("%d",&n);
    while(n--)
    {
        isprime = -1;
        int m,k;
        scanf("%d%d",&m,&k);
        if(m>k)
        {
            m=m^k;
            k=m^k;
            m=m^k;
        }
        for(int i = 0; i<len-1; i++)
        {
            if(isprimes[i]>=m&&isprimes[i+1]>=k)
            {
                if(isprimes[i]-m == isprimes[i+1]-k)
                {
                    isprime = isprimes[i]-m;
                    break;
                }
            }
        }
        printf("Case %d: %d\n",count_primes++,isprime);
    }
    return 0;
}

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页