代码地址
https://blog.csdn.net/sinat_40038284/article/details/111188024
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l2', random_state=0, solver='lbfgs', tol=0.0001,
verbose=0, warm_start=False)
Logistics Regression参数名称
含义
penalty
字符串型,’l1’ or ‘l2’,默认:’l2’;正则化类型。
dual
布尔型,默认:False。当样本数>特征数时,令dual=False;用于liblinear解决器中L2正则化。
tol
浮点型,默认:1e-4;迭代终止判断的误差范围。
C
浮点型,默认:1.0;其值等于正则化强度的倒数,为正的浮点数。数值越小表示正则化越强。
fit_intercept
布尔型,默认:True;指定是否应该向决策函数添加常量(即偏差或截距)。
intercept_scaling
浮点型,默认为1;仅仅当solver是”liblinear”时有用。
class_weight
默认为None;与“{class_label: weight}”形式中的类相关联的权重。如果不给,则所有的类的权重都应该是1。
random_state
整型,默认None;当“solver”==“sag”或“liblinear”时使用。在变换数据时使用的伪随机数生成器的种子。如果是整数, random_state为随机数生成器使用的种子;若为RandomState实例,则random_state为随机数生成器;如果没有,随机数生成器就是’ np.random '使用的RandomState实例。
solver
{‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’},默认: ‘liblinear’;用于优化问题的算法。
对于小数据集来说,“liblinear”是个不错的选择,而“sag”和’saga’对于大型数据集会更快。
对于多类问题,只有’newton-cg’, ‘sag’, 'saga’和’lbfgs’可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类。
max_iter
最大迭代次数,整型,默认是100;
multi_class
字符串型,{ovr’, ‘multinomial’},默认:‘ovr’;如果选择的选项是“ovr”,那么一个二进制问题适合于每个标签,否则损失最小化就是整个概率分布的多项式损失。对liblinear solver无效。
verbose
整型,默认是0;对于liblinear和lbfgs solver,verbose可以设为任意正数。
warm_start
布尔型,默认为False;当设置为True时,重用前一个调用的解决方案以适合初始化。否则,只擦除前一个解决方案。对liblinear解码器无效。
n_jobs
整型,默认是1;如果multi_class=‘ovr’ ,则为在类上并行时使用的CPU核数。无论是否指定了multi_class,当将’ solver ’ '设置为’liblinear’时,将忽略此参数。如果给定值为-1,则使用所有核。