PRML
文章平均质量分 90
小陈同学-陈百万
这个作者很懒,什么都没留下…
展开
-
PRML(4)--Chapter2(下)-非参数估计
PRML第二章下-非参数估计1.直方图2. 核方法3. K近邻概率密度建模-参数化方法-概率密度的形式一定,由数据集确定密度中的参数即可。局限性–概率模型选的不对,不能够描述数据模态此时,介绍一下非参数方法–直方图,核方法, K紧邻1.直方图直方图–密度估计–每个直方处密度,nin_ini该直方内的样本数,N总样本数,Δ\DeltaΔ该直方宽度pi=niNΔip_i=\frac{n_i}{N\Delta_i}pi=NΔini缺点:在直方交界处概率密度不连续D维变量,每个维度原创 2021-05-10 23:20:53 · 133 阅读 · 0 评论 -
PRML(3)--Chapter2(上)-概率分布-二元变量、多项式变量、高斯分布、指数族分布
PRML第二章2.1二元变量2.1.1 beta 分布2.2 多项式变量简单的模型中讨论一些关键的统计学概念–贝叶斯推断本章讨论概率分布是为了实现密度估计:给定有限次观测x1,...,xN\bm{x}_1,...,\bm{x}_Nx1,...,xN,对随机变量x\bm{x}x的概率分布p(x)p(\bm{x})p(x)建模。密度估计本来是病态的,因为产生观测数据集合的概率分布可能有无限种。本章主要内容:1.参数分布:拥有少量可以调节的参数,控制了整个分布。密度估计就是确定参数的过程–离散随原创 2021-05-10 23:20:32 · 570 阅读 · 0 评论 -
PRML(2)--绪论(下)模型选择、纬度灾难、决策论、信息论
PRML绪论1.3 模型选择1.4 纬度灾难1.5 决策论1.5.1最小错误分率1.5.2最小化期望损失1.5.3拒绝选项1.5.4推断和决策1.5.5 回归问题的损失函数1.3 模型选择模型过复杂会造成过拟合问题,需要通过一些技术来降低模型的复杂度。就最大似然而言,可以增加一个惩罚项来补偿过于复杂的模型造成的过拟合问题。赤池信息准则,使式1.73最大,M是模型中可调节参数的数量:lnp(D∣wML)−Mlnp(\mathcal{D}|\bm{w}_ML)-Mlnp(D∣wML)−M1.73原创 2021-03-16 23:57:45 · 389 阅读 · 0 评论 -
PRML(1)--绪论(上)多项式曲线拟合、概率论
PRML绪论原创 2021-03-12 00:01:01 · 327 阅读 · 0 评论