『问题描述』
伊万洛夫在比武大会上力克群雄,成为新一届“草原雄鹰”,为部落赢得了莫大荣誉。首领决定要重重奖赏,他对伊万洛夫说:“孩子,你是知道的,面前的这片草原,南北向和东西向的道路纵横交错。
现在,路口放着纯金打造的俄罗斯套娃,重量大小不等,重的都能装下轻的。你可以沿着道路飞奔,拾取路口的套娃,要求是任何时刻必须是一个套娃,装好后就不能再拆开了。注意不要走重复路。”
请你为伊万洛夫规划路线,使得他能够有最大的收获。
【任务要求】
输入包括多组测试用例;
每个测试用例开始是一对整数<R, C>,R表示东西向道路数,C表示南北向道路总数;接下来R行,每行包括C个正整数(或0)W[r,c],分别表示第r条东西向道路与第c条南北向道路交叉处路口放置的俄罗斯娃娃的重量(或0表示没有放置娃娃)。 最终输出能有最大收获的路径规划。
【样例输入1】:
2 7
1 2 13 6 7 12 11
14 3 4 5 8 9 10
【样例输出1】:
1 2 3 4 5 6 7 8 9 10 11 12
【样例输入2】:
5 5
1 16 15 14 13
2 17 24 23 12
3 18 25 22 11
4 19 20 21 10
5 6 7 8 9
【样例输出2】:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
【注释】:
1)从<0,0>出发;
2)路线不能重复;
3)不要求最后回到出发点。
『解题思路』
通过观察题目,可以将本题抽象成一个求最大权值的有向图问题,将每个路口看作一个顶点,权值使用w(i)表示。对于相邻两点u和v,当且仅当w(u)<w(v) 或 w(v) == 0时,u和v之间存在弧<u,v>,u为弧尾,v为弧头,其权值为v上权