求解a的b次方
快速幂的迭代写法
typedef long long LL;
LL binarypow(LL a,LL b,LL m) {
LL ans=1;
while(b>0){
if(b&1){
ans=ans*a%m;
}
a=a*a%m;
b>>=1;
}
return ans;
}
快速幂的递归写法
typedef long long LL;
LL binarypow(LL a,LL b,LL m){
if(b==0) return 1;
if(b%2==1) return a*binarypow(a,b-1,m)%m;
else {
LL mul=binarypow(a,b/2,m);
return mul*mul%m;
}
}
矩阵快速幂(假设为一个4*4的矩阵)
#define LL long long
const int mod=1000000007;
struct matrix
{
LL x[4][4];
};
matrix mutimatrix(matrix a,matrix b)//该函数用于算两个矩阵相乘
{
matrix temp;
memset(temp.x,0,sizeof(temp.x));
for(int i=0;i<4;i++)
for(int j=0;j<4;j++)
for(int k=0;k<4;k++)
{
temp.x[i][j]+=a.x[i][k]*b.x[k][j];
temp.x[i][j]%=mod;
}
return temp;
}
matrix k_powmatrix(matrix a,LL n)//矩阵快速幂,和之前的快速幂迭代写法差不多。
{
matrix temp;
memset(temp.x,0,sizeof(temp.x));
for(int i=0;i<4;i++)
temp.x[i][i]=1;
while(n)
{
if(n&1)
temp=mutimatrix(temp,a);
a=mutimatrix(a,a);
n>>=1;
}
return temp;
}