第3章 函数的增长

3.1 渐进记号

3.1-1

证明:需要确定正常量c_1c_2n_0,使得对所有n\geqslant n_0,有c_1(f(n)+g(n))\leqslant max(f(n),g(n))\leqslant c_2(f(n)+g(n))。通过选择任何常量c_1\leq 1/2,可以使左边的不等式对任何n\geq 0成立。同样,通过选择任何常量c_2\geq 1,可以使右边的不等式对任何n\geq 0成立。因此, 通过选择c_1=1/2,c2=1n_0=0,可以证明max(f(n),g(n))=\Theta (f(n)+g(n))

3.1-2

证明: 需要确定正常量c_1c_2n_0,使得对所有n\geqslant n_0,有c_1n^b\leq (n+a)^b\leq c_2n^b。用n^b除上式得:c_1\leq (1+\frac{a}{n})^b\leq c_2。通过选择任何常量c_1\leq 0,可以使左边的不等式对任何n\geq \left | a \right |成立。同样,通过选择任何常量c_2\geq 2^b,可以使右边的不等式对任何n\geq \left | a \right |成立。因此,通过选择c_1=0,c_2=2^bn_0=\left | a \right |,可以证明(n+a)^b=\Theta (n^b)

3.1-3

设算法A的运行时间为T(n)T(n)\geq O(n^2)意味着对于f(n)\in{f(n):存在正常量cn_0,使得对所有n\geq n_0,有0\leq f(n)\leq cg(n)},有T(n)\geq f(n)。因为T(n)\geq 0,所以T(n)\geq O(n^2)对所有T(n)都成立。因此“算法A的运行时间至少是O(n^2)”这一表述是无意义的。

3.1-4

  1.  需要确定正常量cn_0,使得对所有n\geqslant n_0,有0\leq 2^{n+1}\leq c2^n。用2^n除上式得:0\leq 2\leq c。通过选择任何常量c\geq 2,可以使不等式对任何n\geq 0成立。因此,通过选择c=2n_0=0,可以证明2^{n+1}=O(2^n)
  2. 假设存在cn_0,使得对所有n\geq n_0,有0\leq 2^{2n}\leq c2^n。然而用2^n除该式,得:0\leq 2^n\leq c,因为c为常量,所以对任意大的n,该不等式不可能成立。

3.1-5

证明: 

  • f(n)=\Theta (g(n))\Rightarrow存在正常量c_1c_2n_0,使得对所有n\geq n_0,有0\leq c_1g(n)\leq f(n)\leq c_2g(n)\Rightarrow存在正常量c=c_2n_0,有0\leq f(n)\leq cg(n),即f(n)=O(g(n))。 存在正常量c=c_1n_0,有0\leq cg(n)\leq f(n),即f(n)=\Omega (g(n))
  • f(n)=O(g(n))f(n)=\Omega (g(n))\Rightarrow存在正常量c_2n_0,有0\leq f(n)\leq cg(n)。 存在正常量c_1n_0,有0\leq cg(n)\leq f(n)\Rightarrow存在正常量c_1c_2n_0,使得对所有n\geq n_0,有0\leq c_1g(n)\leq f(n)\leq c_2g(n),即f(n)=\Theta (g(n))

3.1-6

证明:设算法的运行时间为T(n),最坏情况运行时间为U(n),最好情况运行时间为L(n),有0\leq L(n)\leq T(n)\leq U(n)。 

  • T(n)=\Theta (g(n))\Rightarrow存在正常量c_1c_2n_0,使得对所有n\geq n_0,有0\leq c_1g(n)\leq T(n)\leq c_2g(n)\Rightarrow存在正常量c=c_2'n_0,有0\leq U(n)\leq cg(n),即U(n)=O(g(n))。 存在正常量c=c_1'n_0,有0\leq cg(n)\leq L(n),即L(n)=\Omega (g(n))
  • U(n)=O(g(n))L(n)=\Omega (g(n))\Rightarrow存在正常量c_2n_0,有0\leq U(n)\leq cg(n)。 存在正常量c_1n_0,有0\leq cg(n)\leq L(n)\Rightarrow存在正常量c_1c_2n_0,使得对所有n\geq n_0,有0\leq c_1g(n)\leq L(n)\leq T(n)\leq U(n)\leq c_2g(n),即T(n)=\Theta (g(n))

3.1-7

证明:设f(n)\in o(g(n))\cap w(g(n))。则对任意正常量c>0,存在常量n_0>0,使得对所有n\geq n_0,有0\leq f(n)< cg(n)。且对任意正常量c'>0,存在常量n_0',使得对所有n\geq n_0',有0\leq c'g(n)<f(n)。所以0\leq c'g(n)< f(n)< cg(n),但当c'\geq c时,f(n)不存在。因此o(g(n))\cap w(g(n))为空集。

3.1-8

  1. \Omega (g(n,m))=\left \{ f(n,m):存在正常量cn_0m_0,使得对所有n\geq n_0m\geq m_0,有0\leq cg(n,m)\leq f(n,m)\left \right \}
  2. \Theta (g(n,m))=\left \{ f(n,m):存在正常量c_1c_2n_0m_0,使得对所有n\geq n_0m\geq m_0,有0\leq c_1g(n,m)\leq f(n,m)\leq c_2g(n,m)\left \right \}

3.2 标准记号与常用函数

3.2-1

证明:因为f(n)g(n)是单调递增的函数,所以m\leq n蕴涵f(m)\leq f(n)g(m)\leq g(n)

  1. 因为f(m)+g(m)\leq f(n)+g(n),f(g(m))\leq f(g(n)),所以函数f(n)+g(n)f(g(n))也是单调递增的。
  2. 因为f(n)g(n)是非负的,则对所有nf(n)\geq 0,g(n)\geq 0。所以f(m)\cdot g(m)\leq f(n)\cdot g(n),因此f(n)\cdot g(n)是单调递增的。

3.2-2

证明:a^{\log_b{c}}=a^{\frac{\log_a{c}}{\log_a{b}}}=(a^{\log_a{c}})^{\frac{1}{\log_a{b}}}=c^{\log_b{a}}。 

3.2-3

证明:由斯特林近似公式,即等式(3.18),\lg{(n!)}=\lg{\left [ \sqrt{2\pi n}(\frac{n}{e})^n(1+\Theta (\frac{1}{n})) \right ]}=\lg{\sqrt{2\pi n}}+\lg{(\frac{n}{e})^n}+\lg{(1+\Theta (\frac{1}{n}))}=\lg{\sqrt{2\pi n}}+n\lg{(\frac{n}{e})}+\lg{(1+\Theta (\frac{1}{n}))}=\Theta (n\lg{n})

  1. 需要确定正常量n_0,使得对所有c>0,n\geq n_0,有0\leq c2^n<n!。用(n-1)!除上式得:0\leq 2c\cdot \frac{2^{n-1}}{(n-1)!}<n。因为\frac{2^{n-1}}{(n-1)!}\leq 2\Rightarrow 2c\cdot \frac{2^{n-1}}{(n-1)!}\leq 4c\Rightarrow n>4c,所以通过选择任何正常量n_0=\left \lceil 4c \right \rceil,可以使不等式对任何c>0成立,即n!=\omega (2^n)成立。
  2. 需要确定正常量n_0,使得对所有c>0,n\geq n_0,有0\leq n!<cn^n。用cn^{n-1}除上式得:0\leq \frac{n!}{cn^{n-1}}<n。因为\frac{n!}{n^{n-1}}\leq 1\Rightarrow \frac{n!}{cn^{n-1}}\leq \frac{1}{c}\Rightarrow n>\frac{1}{c},所以通过选择任何正常量n_0=\left \lceil \frac{1}{c} \right \rceil,可以使不等式对任何c>0成立,即n!=o(n^n)成立。

3.2-6

证明: 

  • 因为\phi ^2=(\frac{1+\sqrt{5}}{2})^2=\frac{6+2\sqrt{5}}{4}=\frac{3+\sqrt{5}}{2}=\frac{1+\sqrt{5}}{2}+1=\phi +1,所以黄金分割率\phi满足方程x^2=x+1
  • 因为\hat{\phi} ^2=(\frac{1-\sqrt{5}}{2})^2=\frac{6-2\sqrt{5}}{4}=\frac{3-\sqrt{5}}{2}=\frac{1-\sqrt{5}}{2}+1=\hat{\phi} +1,黄金分割率的共轭数\hat{\phi}满足方程x^2=x+1

3.2-7

证明:

  1. i=0时, F_0=\frac{\phi ^0-\hat{\phi}^0}{\sqrt{5}}=\frac{1-1}{\sqrt{5}}=0成立。
  2. 假设i=k时,F_k=\frac{\phi ^k-\hat{\phi}^k}{\sqrt{5}}成立。当i=k+1时,F_{k+1}=F_k+F_{k-1}=\frac{\phi ^k-\hat{\phi }^k}{\sqrt{5}}+\frac{\phi ^{k-1}-\hat{\phi }^{k-1}}{\sqrt{5}}=\frac{\phi ^{k-1}(\phi +1)-\hat{\phi }^{k-1}(\hat{\phi }+1)}{\sqrt{5}}=\frac{\phi ^{k-1}\phi ^2-\hat{\phi }^{k-1}(\hat{\phi }^2)}{\sqrt{5}}=\frac{\phi ^{k+1}-\hat{\phi }^{k+1}}{\sqrt{5}}成立。

所以第i个斐波那契数满足等式 F_i=\frac{\phi ^i-\hat{\phi}^i}{\sqrt{5}}

3.2-8

证明: k\ln{k}=\Theta (n)\Rightarrow存在正常量c_1c_2n_0,使得对所有n\geq n_0,有c_1n\leq k\ln{k}\leq c_2n\Rightarrow\ln{c_1}+\ln{n}\leq \ln{k}+\ln{\ln{k}}\leq \ln{c_2}+\ln{n}\Rightarrow\frac{\ln{c_1}}{\ln{k}}+\frac{\ln{n}}{\ln{k}}\leq 1+\frac{\ln{\ln{k}}}{\ln{k}}\leq \frac{\ln{c_2}}{\ln{k}}+\frac{\ln{n}}{\ln{k}}\Rightarrow1+\frac{\ln{\ln{k}}}{\ln{k}}-\frac{\ln{c_2}}{\ln{k}}\leq \frac{\ln{n}}{\ln{k}}\leq 1+\frac{\ln{\ln{k}}}{\ln{k}}-\frac{\ln{c_1}}{\ln{k}}\Rightarrow1+\frac{\ln{\frac{\ln{k}}{c_2}}}{\ln{k}}\leq \frac{\ln{n}}{\ln{k}}\leq 1+\frac{\ln{\frac{\ln{k}}{c_1}}}{\ln{k}}。令f_1(k)=1+\frac{\ln{\frac{\ln{k}}{c_1}}}{\ln{k}},f_2(k)=1+\frac{\ln{\frac{\ln{k}}{c_2}}}{\ln{k}},因为{f_1}'(k)=\frac{({\ln{\frac{\ln{k}}{c_1}}})'\ln{k}+\ln{\frac{\ln{k}}{c_1}}{(\ln{k})}'}{(\ln{k})^2}=\frac{\frac{c_1}{\ln{k}}\frac{1}{c_1k}\ln{k}+(\ln{\frac{\ln{k}}{c_1}})\frac{1}{k}}{(\ln{k})^2}=\frac{1+\ln{\frac{\ln{k}}{c_1}}}{k(\ln{k})^2},显然k(\ln{k})^2>0,令g_1(k)=1+\ln{\frac{\ln{k}}{c_1}},显然g_1(x)单调递增,g_1(x)=0\Rightarrow \ln{\frac{\ln{k}}{c_1}}=-1\Rightarrow k=e^{(\frac{c_1}{e})},所以当0<k<e^{(\frac{c_1}{e})}时,{f_1}'(k)<0,当k>e^{(\frac{c_1}{e})}时,{f_1}'(k)>0,所以f_1(k)k=+\infty处取得最大值,即max(f_1(k))=\lim_{k\rightarrow +\infty }{f_1(k)}=\lim_{k\rightarrow +\infty }{1+\frac{\ln{\frac{\ln{k}}{c_1}}}{\ln{k}}}=1。同理f_2(k)k=e^{(\frac{c_2}{e})}处取得最小值,即min(f_2(k))=f_2(e^{(\frac{c_2}{e})})=1-\frac{e}{c_2}。所以1-\frac{e}{c_2}\leq \frac{\ln{n}}{\ln{k}}\leq 1c_1n\leq k\ln{k}\leq c_2n\Rightarrow \frac{c_1n}{\ln{k}}\leq k\leq \frac{c_2n}{\ln{k}}\Rightarrow \frac{\ln{n}}{\ln{k}}\frac{c_1n}{\ln{n}}\leq k\leq \frac{\ln{n}}{\ln{k}}\frac{c_2n}{\ln{n}}\Rightarrowc_1(1-\frac{e}{c_2})\frac{n}{\ln{n}}\leq k\leq \frac{c_2n}{\ln{n}},因此,通过选择c'_1=c_1(1-\frac{e}{c_2}),c'_2=c_2n'_0=n_0,可以证明\frac{c'_1n}{\ln{n}}\leq k\leq \frac{c'_2n}{\ln{n}},即k=\Theta (n/ln{n})


思考题

3-1

a.需要确定正常量cn_0,使得对所有n\geqslant n_0,有0\leq p(n)\leq cn^k,即0\leq \sum _{i=0}^{d}{a_in^i}\leq cn^k。因为k\geq d,通过选择任何常量c\geq \sum _{i=0}^{d}{\left | a_i \right |},可以使不等式对任何n\geq 0成立。因此,通过选择c= \sum _{i=0}^{d}{\left | a_i \right |}n_0=0,可以证明p(n)=O(n^k)

b.需要确定正常量cn_0,使得对所有n\geqslant n_0,有0\leq cn^k\leq p(n),即0\leq cn^k\leq \sum _{i=0}^{d}{a_in^i}。因为k\leq d,通过选择任何常量c\leq a_d,可以使不等式对任何n\geq 0成立。因此,通过选择c=a_dn_0=0,可以证明p(n)=\Omega (n^k)

c.需要确定正常量c_1c_2n_0,使得对所有n\geqslant n_0,有c_1n^k\leqslant p(n)\leqslant c_2n^k,即c_1n^k\leqslant\sum _{i=0}^{d}{a_in^i}\leqslant c_2n^k。通过选择任何常量c_1\leq a_d,可以使左边的不等式对任何n\geq 0成立。同样,通过选择任何常量c_2\geq \sum _{i=0}^{d}{\left | a_i \right |},可以使右边的不等式对任何n\geq 0成立。因此,通过选择c_1=a_d,c2=\sum _{i=0}^{d}{\left | a_i \right |}n_0=0,可以证明p(n)=\Theta (n^k)

d.需要确定正常量n_0,使得对所有c>0,n\geq n_0,有0\leq p(n)<cn^k,即0\leq \sum _{i=0}^{d}{a_in^i}<cn^k。因为\sum _{i=0}^{d}{a_in^i}\leq (\sum_{i=0}^{d}{\left | a_i \right |})n^d<(\sum_{i=0}^{d}{\left | a_i \right |})n^k,所以通过选择任何正常量n_0=\left \lceil \frac{\sum_{i=0}^{d}{\left | a_i \right |}}{c} \right \rceil,可以使不等式对任何c>0成立,即p(n)=o(n^k)成立。

e.需要确定正常量n_0,使得对所有c>0,n\geq n_0,有0\leq cn^k<p(n),即0\leq cn^k<\sum _{i=0}^{d}{a_in^i}。因为\sum _{i=0}^{d}{a_in^i}\geq (a_d-\sum_{i=0}^{d-1}{\left | a_i \right |})n^d>(a_d-\sum_{i=0}^{d-1}{\left | a_i \right |})n^k,所以通过选择任何正常量n_0=\left \lceil a_d-\sum_{i=0}^{d-1}{\left | a_i \right |} \right \rceil,可以使不等式对任何c>0成立,即p(n)=\omega (n^k)成立。

3-2

ABOo\Omega\omega\Theta
\lg^k{n}n^{\varepsilon }
n^kc^n
\sqrt{n}n^{\sin{n}}
2^n2^{n/2}
n^{\lg{c}}c^{\lg{n}}
\lg{(n!)}\lg{(n^n)}

3-3

a.

2^{2^{n+1}}2^{2^n}(n+1)!n!e^nn\cdot 2^n
2^n\left ( \frac{3}{2} \right )^nn^{\lg{\lg{n}}},(\lg{n})^{\lg{n}}(\lg{n})!n^3n^2,4^{\lg{n}}
n\lg{n},\lg{(n!)}n,2^{\lg{n}}(\sqrt{2})^{\lg{n}}2^{\sqrt{2\lg{n}}}\lg^2{n}\ln{n}
\sqrt{\lg{n}}\ln{\ln{n}}2^{\lg^{\ast }{n}}\lg^{\ast }{n},\lg^{\ast }{(\lg{n})}\lg{(\lg^{\ast }{n})}n^{1/\lg{n}},1

b.f(n)=n^{\sin{n}}

3-4

a.f(n)=n,g(n)=n^2时猜测不成立。

b.f(n)=1,g(n)=n时猜测不成立。

c.f(n)=O(g(n))\Rightarrow \left \{ f(n):存在正常量cn_0,使得对所有n\geqslant n_0,有0\leqslant f(n)\leqslant cg(n)\left \right \}\Rightarrow \lg{(f(n))}\leqslant \lg{c}+\lg{(g(n))}\Rightarrow\lg{(f(n))}=O(\lg{(g(n))})

d.f(n)=2n,g(n)=n时猜测不成立。

e.f(n)=1/n时猜测不成立。

f.f(n)=O(g(n))\Rightarrow \left \{ f(n):存在正常量cn_0,使得对所有n\geqslant n_0,有0\leqslant f(n)\leqslant cg(n)\left \right \}\Rightarrow 0\leqslant f(n)/c\leqslant g(n)\Rightarrow g(n)=\Omega (f(n))

g.f(n)=2^n时猜测不成立。

h.o(f(n))=\left \{​对任意正常量c>0,存在常量n_0>0,使得对所有n\geqslant n_0,有0\leqslant o(f(n))\leqslant cf(n)\left \right \}\Rightarrow f(n)\leqslant f(n)+o(f(n))\leqslant (c+1)f(n)\Rightarrowf(n)+o(f(n))=\Theta (f(n))

3-5

a.证明:对渐进非负的任意两个函数f(n)g(n),当n足够大时,只能出现三种情况:1.\,0\leqslant f(n)\leqslant cg(n);\quad2.\,0\leqslant cg(n)\leqslant f(n);\quad 3.\,f(n)g(n)有无限多个交点。第一种情况即f(n)=O(g(n)),第三种情况即f(n)=\overset{\infty}{\Omega }(g(n)),第二种情况即两者均成立。然而,如果使用\Omega来代替\overset{\infty}{\Omega },第一种情况即f(n)=O(g(n)),第二种情况即f(n)=\Omega (g(n)),但两者均成立的时f(n)=cg(n),与情况三不符。

b.优点:能分析更宽泛、更复杂的情况;缺点:边界条件不确定,分析结果不清晰。

c.f(n)=\Theta (g(n))\nRightarrow f(n)=O'(g(n))\,and\,f(n)=\Omega (g(n))\quad f(n)=\Theta (g(n))\Leftarrow f(n)=O'(g(n))\,and\,f(n)=\Omega (g(n))

d.\tilde{\Omega }(g(n))=\left \{ f(n):存在正常量c,kn_0,使得对所有n\geqslant n_0,有0\leqslant cg(n)\lg^k{(n)}\leqslant f(n)\left \right \}\tilde{\Theta }(g(n))=\left \{ f(n):存在正常量c_1,c_2,kn_0,使得对所有n\geqslant n_0,有0\leqslant c_1g(n)\lg^k{(n)}\leqslant f(n)\leqslant c_2g(n)\lg^k{(n)}\left \right \}

f(n)=\tilde{\Theta }(g(n))\Leftrightarrow f(n)=\tilde{O}(g(n))\,and\,f(n)=\tilde{\Omega }(g(n))

3-6

f(n)cf_c^{\ast }(n)
n-10\Theta (n)
\lg{n}1\Theta (\lg^{\ast }{(n)})
n/21\Theta (\lg{n})
n/22\Theta (\lg{n})
\sqrt{n}2\Theta (\lg{\lg{(n)}})
\sqrt{n}1+\infty
n^{1/3}2\Theta (\lg{\lg{(n)}})
n/\lg{n}2 
  • 5
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
常微分方程(Ordinary Differential Equations, ODEs)是数学中的一个核心领域,主要研究变量只依赖于一个自变量的一阶或高阶导数的方程。第三通常会深入讨论微分方程的理论基础、解法、稳定性分析以及一些典型模型。思维导图可以帮助你系统地组织和理解这些内容,通常包括以下几个部分: 1. **节概述**: - 介绍常微分方程的基本概念和分类(线性/非线性) - 引入微分方程的物理背景和实际应用 2. **一阶微分方程**: - 一阶方程的定义和形式 - 齐次方程与非齐次方程 - 移动分母法则(分离变量法)和积分因子法 3. **二阶及更高阶方程**: - 二阶常系数线性微分方程的特征方程与解法(如幂级数解法) - 解法:克拉默法则、矩阵方法(如高斯消元法) 5. **非线性微分方程**: - 变分法简介 - 分类:解析解、数值解法(例如欧拉方法、龙格-库塔法) 6. **稳定性与增长率**: - 稳定解的概念 - 线性系统的稳定性分析(Lyapunov函数) - 周期解与混沌现象 7. **特例与应用**: - 物理模型:如简单振动系统、人口模型等 - 经济学、生物学中的微分方程应用 8. **数值方法**: - 有限差分法 - 插值与数值积分 - 数值求解工具的使用(软件如MATLAB、Python库) 相关问题-- 1. 在第三中,哪些特殊类型的微分方程会有详细的讨论? 2. 对于非线性微分方程,讲解了哪些求解和分析的方法? 3. 稳定性分析在第三中的具体作用是什么? 4. 第三是否会涉及微分方程的实际应用案例及其解决策略?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值