一、线性结构:2.两个有序链表序列的交集

该博客探讨了如何处理两个有序链表的交集问题。原来的时间复杂度为O(m*n),通过优化,利用有序性调整算法,降低到O(m+n)。博主分享了在处理大规模数据时遇到的超时问题及其解决方案。
摘要由CSDN通过智能技术生成

题目描述

在这里插入图片描述

代码

#include <stdio.h> 
#include <malloc.h>

typedef struct PolyNode *Polynomial;
struct PolyNode{
	int data;
	Polynomial link;
};

void Attach(int d, Polynomial *pRear)
{
	Polynomial p;
	p = (Polynomial)malloc(sizeof(struct PolyNode));
	p->data = d;
	p->link = NULL;
	(*pRear)->link = p;
	*pRear = p;
}

Polynomial PolyRead()
{
	Polynomial front,rear,t;
	int m;
	front = (Polynomial)malloc(sizeof(struct PolyNode));
	front->link = NULL;
	rear = front;
	scanf("%d",&m);
	Attach(m, &rear);
	while(m+1){
		scanf("%d",&m);
		Attach(m, &rear);
	}
	t = front; front = front->link; free(t);
	return front;
}

Polynomial PolyInter(Polynomial P1, Polynomial P2)
{
	Polynomial t1, t2, front, rear,t;
	t1 = P1;t2 = P2;
	front = (Polynomial)malloc(sizeof(struct PolyNode));
    front->link = NULL;
	rear = front;
	while(t1->data+1&&t2->data+1){
		if(t1->data==t2->data){
			Attach(t1->data,&rear);
			t2 = t2->link;
			t1 = t1->link;
		}
		else if(t1->data<t2->data) t1 = t1->link;
		else t2 = t2->link;
	}

	if(front->link==NULL)Attach(-1, &rear);
	t = front;
	front = front->link;
	free(t);
	return front;
}

void PrintPoly(Polynomial P){
	Polynomial t;
	t = P;
	if(t->data==-1) printf("NULL");
	else{
		int m = 0;
		while(t){
			if(m)printf(" ");
			m=1;
			printf("%d",t->data);
			t = t->link;
		}
	}
}

int main()
{
	Polynomial P1, P2, PP;
	P1 = PolyRead();
	P2 = PolyRead();
	PP = PolyInter(P1,P2);
	PrintPoly(PP);
	return 0;
}

问题和解决方法

大规模数据测试点超时

原来进行合并时,没有考虑到两个序列是有序的。PolyInter函数用了两个while分别循环t1和t2,每一项都进行比较,时间复杂度是O(m*n)。
如果考虑到有序,假设第一个序列第一个数字是2,第二个序列第一个数字是3,则第二个序列再往下循环是没有意义的,因为后面的节点都大于3,也就肯定不和2相等。
使用一个while循环,t1节点和t2节点都从头开始,比较二者大小,决定让哪一个往下走,则可以实现时间复杂度为O(m+n)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值