【python】python+numpy模块读、写raw图并使用opencv显示图片

44 篇文章 3 订阅

参考链接:

  1. 使用Python读取raw格式图像并显示
  2. NumPy 数据类型

python对raw图的操作,读取raw图、保存raw图,raw10转raw8操作。

大概用到以下函数:

  1. astype()-进行数值类型转换
  2. numpy.reshape()-将数组重新排列
  3. numpy.fromfile()-读取文件,将文件中的数据以numpy.ndarray类型保存
  4. numpy.ndarray.tofile()numpy.ndarray数据保存到文件中;

numpy中的常用数据类型:

名称说明
bool_布尔型数据,True或False
int_默认的整型数据,类似C中的long,int32或int64
intc与C中的int类型一样,一般是int32或int64
intp用于索引的整数类型,类似C中的ssize_t,一般仍然是int32或int64
int8、int16、int32、int64字节、整数、整数、整数,范围分为是
-128127、-3276832767、
-2147483648~2147483647
-9223372036854775808 to 9223372036854775807
uint8、uint16、uint32、uint64无符号整数,取值范围分别为:
0~255、
0~65535、
0~4294967295
0~18446744073709551615
float16半精度浮点数,包括:1个符号位,5个指数位,10个尾数位
float32单精度浮点数,包括:1个符号位,8个指数位,23个尾数位
float64、float_双精度浮点数,包括:1个符号位,11个指数位,52个尾数位

参考代码:

import numpy as np

def read_raw(file:str,shape:tuple,dtype):
    '''
    读取raw图
    :param file: 文件名
    :param shape: 读取的数据排列,(row,col,channel)
    :param dtype: raw文件类型
    :return: 读取的数据
    '''
    # 从raw文件中读取数据
    data = np.fromfile(file,dtype=dtype)
    # 将读取到的数据重新排列
    data = np.reshape(data,newshape=shape)
    # 返回数据
    return data


def write_raw(file:str,data:np.ndarray):
    '''
    保存raw图
    :param file: 文件名
    :param data: 保存的数据
    :return: 无返回值
    '''
    data.tofile(file)  # 保存数据data到文件file中


def raw_to_raw8(data:np.ndarray,divide:int):
    '''
    raw10、raw12、raw16数据转raw8数据
    :param data: 原始raw数据,pixel raw格式
    :param divide: 转换系数,raw10是4,raw12是power(2,4),raw16是power(2,8)
    :return: 返回raw8数据
    '''
    new_data = data/divide
    return new_data.astype(np.uint8)

实际测试:

if __name__ == "__main__":
    img = read_raw(str("crop"+"."+"raw"),(400,534,1),dtype=np.uint16)
    print(type(img))
    print(np.shape(img))

    write_raw("4.raw",img)
    new_data = raw_to_raw8(img,4)
    write_raw("5.raw",new_data)

    cv2.imshow("raw",new_data)
    dst = cv2.cvtColor(new_data,cv2.COLOR_BayerGR2BGR)
    print(np.shape(dst))
    cv2.imshow("bmp",dst)
    cv2.waitKey(0)

显示结果,raw是单通道是,所以显示是黑白的,bmp是三通道,显示是彩色的。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值