实现功能:
Python实现数值型特征和类别型特征分别采用不同的方法进行缺失值填充。
实现代码:
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
df = pd.read_csv("G:\数据杂坛\datasets\kidney_disease.csv")
df=pd.DataFrame(df)
pd.set_option('display.max_rows', None)
pd.set_option('display.width', None)
df.drop("id",axis=1,inplace=True)
print(df.head())
df["classification"] = df["classification"].apply(lambda x: x if x == "notckd" else "ckd")
# 数值型变量名
num_cols = [col for col in df.columns if df[col].dtype != "object"]
# 分类型变量名
cat_cols = [col for col in df.columns if df[col].dtype == "object"]
print(df.isnull().sum().sort_values(ascending = False))
# ======================缺失值处理============================
def random_value_imputate(col):
"""
函数:随机填充方法(缺失值较多的字段)
"""
# 1、确定填充的数量;在取出缺失值随机选择缺失值数量的样本
random_sample = df[col].dropna().sample(df[col].isna().sum())
# 2、索引号就是原缺失值记录的索引号
random_sample.index = df[df[col].isnull()].index
# 3、通过loc函数定位填充
df.loc[df[col].isnull(), col] = random_sample
def mode_impute(col):
"""
函数:众数填充缺失值
"""
# 1、确定众数
mode = df[col].mode()[0]
# 2、fillna函数填充众数
df[col] = df[col].fillna(mode)
for col in num_cols:
random_value_imputate(col)
for col in cat_cols:
if col in ['rbc','pc']:
# 随机填充
random_value_imputate('rbc')
random_value_imputate('pc')
else:
mode_impute(col)
print(df.isnull().sum().sort_values(ascending = False))
print(df.head())
实现效果:


本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python机器学习、深度学习、数据挖掘基础知识与案例。
致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。
关注 订阅号(数据杂坛) 可在后台联系我获取相关数据集和源码,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。