- 对于正态总体来说,两个总体的方差比较可以用F-分布来检验:
两个独立样本分别来自正态总体1(σ12)和正态总体来2(σ22), 其样本方差分别为S12 和S22。需通过样本方差S12 和S22来检验两个正态分布总体的方差是否存在显著差异。
1.1 建立假设
原假设: σ12 = σ22
备择假设: σ12 ≠ σ22
1.2 计算F统计值
基于原假设,即σ12=σ22,则
S
1
2
S
2
2
{\frac{S_1^2}{S_2^2}}
S22S12的抽样分布服从F分布,分子自由度为n1-1, 分母自由度为n2-1 。
1.3 确定F临界值
F的临界值取决于分子自由度为n1-1, 分母自由度为n2-1 和?值(设定的显著性水平),通过查F分布值表获取。
1.4 比较F临界值与F统计值,得出结论
将F临界值与F=
S
1
2
S
2
2
{\frac{S_1^2}{S_2^2}}
S22S12进行比较, 若F统计值>F临界值,得出方差存在显著差异(有统计学意义),接受原假设; 反之,方差不存在显著差异(无统计学意义),拒绝原假设,接受备择假设。
- F检验应用于方差分析(Analysis of variance,简称ANOVA)
2.1 方差分析的前提:
(1)对于每个总体,因变量均服从正态分布;
(2)每个总体的方差σ²相同;
(3)从每个总体中抽取的样本是相互独立的。
有k个总体均服从正态分布,且方差相等,均值分别为?1, ?2, …, ?k, 需判定这些均值是否具有显著性的差异。
现从这些总体中承机抽取得到k个样本,数量分别为n1, n2, …, nk。
2.2 检验步骤:
a. 提出假设
原假设: ?1= ?2=…=?j=…=?k
备择假设:总体均值不全相等
b. 计算基础数据
各样本均值:
x
‾
j
=
∑
i
=
1
n
j
x
i
j
n
j
\overline x_j = {\frac {\sum_{{i=1}}^{n_{j}} x_{ij}}{n_{j}}}
xj=nj∑i=1njxij
各样本方差:
S
j
2
=
∑
i
=
1
n
j
(
x
i
j
−
x
‾
j
)
2
n
j
−
1
S_j^2 = {\frac {\sum_{{i=1}}^{n_{j}} (x_{ij}-\overline x_j)^2}{n_{j}-1}}
Sj2=nj−1∑i=1nj(xij−xj)2
所有样本的均值:
x
‾
‾
=
∑
j
=
1
k
∑
i
=
1
n
j
x
i
j
n
r
\overline {\overline x }= {\frac {\sum_{{j=1}}^{k} \sum_{{i=1}}^{n_{j}}x_{ij}}{n_r}}
x=nr∑j=1k∑i=1njxij, 其中nr = n1 + n2 + … + nk。
c. 总体方差的组间估计:
处理平方和:SSTR (sum of squares due to treatments)
S
S
T
R
=
∑
j
=
1
k
n
j
∗
(
x
‾
j
−
x
‾
‾
)
2
SSTR = \sum_{{j=1}}^{k} n_{j}* (\overline x_{j} - \overline {\overline x})^2
SSTR=j=1∑knj∗(xj−x)2
处理均方:MSTR (mean square due to treatments)
M
S
T
R
=
S
S
T
R
k
−
1
=
∑
j
=
1
k
n
j
∗
(
x
‾
j
−
x
‾
‾
)
2
k
−
1
MSTR = {\frac {SSTR}{k-1}} = {\frac {\sum_{{j=1}}^{k} n_{j}* (\overline x_{j} - \overline {\overline x})^2}{k-1}}
MSTR=k−1SSTR=k−1∑j=1knj∗(xj−x)2
d. 总体方差的组内估计
误差均方:MSE (mean square due to error)
M
S
E
=
∑
j
=
1
k
(
n
j
−
1
)
∗
S
j
2
n
r
−
k
MSE = {\frac {\sum_{{j=1}}^{k} (n_{j}-1)* S_{j}^2}{n_{r}-k}}
MSE=nr−k∑j=1k(nj−1)∗Sj2
MSE为无偏估计,是基于每个处理内部的变动,不受原假设是否为真的影响。
e. 方差估计量的比较:F检验
检验统计量
F
=
M
S
T
R
M
S
E
F = {\frac {MSTR}{MSE}}
F=MSEMSTR
对于给定的?值, 若F > F?,则拒绝原假设,接受备择假设,即这些总体的均值不全相等。