F检验的应用

  1. 对于正态总体来说,两个总体的方差比较可以用F-分布来检验:

两个独立样本分别来自正态总体1(σ12)和正态总体来2(σ22), 其样本方差分别为S12 和S22。需通过样本方差S12 和S22来检验两个正态分布总体的方差是否存在显著差异。

1.1 建立假设
原假设: σ12 = σ22
备择假设: σ12 ≠ σ22

1.2 计算F统计值
基于原假设,即σ1222,则 S 1 2 S 2 2 {\frac{S_1^2}{S_2^2}} S22S12的抽样分布服从F分布分子自由度为n1-1, 分母自由度为n2-1

1.3 确定F临界值
F的临界值取决于分子自由度为n1-1, 分母自由度为n2-1 和?值(设定的显著性水平),通过查F分布值表获取。

1.4 比较F临界值与F统计值,得出结论
将F临界值与F= S 1 2 S 2 2 {\frac{S_1^2}{S_2^2}} S22S12进行比较, 若F统计值>F临界值,得出方差存在显著差异(有统计学意义),接受原假设; 反之,方差不存在显著差异(无统计学意义),拒绝原假设,接受备择假设。


  1. F检验应用于方差分析(Analysis of variance,简称ANOVA)

2.1 方差分析的前提:
(1)对于每个总体,因变量均服从正态分布;
(2)每个总体的方差σ²相同;
(3)从每个总体中抽取的样本是相互独立的。

有k个总体均服从正态分布,且方差相等,均值分别为?1, ?2, …, ?k, 需判定这些均值是否具有显著性的差异。
现从这些总体中承机抽取得到k个样本,数量分别为n1, n2, …, nk

2.2 检验步骤:
a. 提出假设
原假设: ?1= ?2=…=?j=…=?k
备择假设:总体均值不全相等

b. 计算基础数据
各样本均值: x ‾ j = ∑ i = 1 n j x i j n j \overline x_j = {\frac {\sum_{{i=1}}^{n_{j}} x_{ij}}{n_{j}}} xj=nji=1njxij
各样本方差: S j 2 = ∑ i = 1 n j ( x i j − x ‾ j ) 2 n j − 1 S_j^2 = {\frac {\sum_{{i=1}}^{n_{j}} (x_{ij}-\overline x_j)^2}{n_{j}-1}} Sj2=nj1i=1nj(xijxj)2
所有样本的均值: x ‾ ‾ = ∑ j = 1 k ∑ i = 1 n j x i j n r \overline {\overline x }= {\frac {\sum_{{j=1}}^{k} \sum_{{i=1}}^{n_{j}}x_{ij}}{n_r}} x=nrj=1ki=1njxij, 其中nr = n1 + n2 + … + nk

c. 总体方差的组间估计:
处理平方和:SSTR (sum of squares due to treatments)
S S T R = ∑ j = 1 k n j ∗ ( x ‾ j − x ‾ ‾ ) 2 SSTR = \sum_{{j=1}}^{k} n_{j}* (\overline x_{j} - \overline {\overline x})^2 SSTR=j=1knj(xjx)2
处理均方:MSTR (mean square due to treatments)
M S T R = S S T R k − 1 = ∑ j = 1 k n j ∗ ( x ‾ j − x ‾ ‾ ) 2 k − 1 MSTR = {\frac {SSTR}{k-1}} = {\frac {\sum_{{j=1}}^{k} n_{j}* (\overline x_{j} - \overline {\overline x})^2}{k-1}} MSTR=k1SSTR=k1j=1knj(xjx)2

d. 总体方差的组内估计
误差均方:MSE (mean square due to error)
M S E = ∑ j = 1 k ( n j − 1 ) ∗ S j 2 n r − k MSE = {\frac {\sum_{{j=1}}^{k} (n_{j}-1)* S_{j}^2}{n_{r}-k}} MSE=nrkj=1k(nj1)Sj2
MSE为无偏估计,是基于每个处理内部的变动,不受原假设是否为真的影响。

e. 方差估计量的比较:F检验
检验统计量 F = M S T R M S E F = {\frac {MSTR}{MSE}} F=MSEMSTR
对于给定的?值, 若F > F?,则拒绝原假设,接受备择假设,即这些总体的均值不全相等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值