leetcode 523. Continuous Subarray Sum | 523. 连续的子数组和(同余定理)

本文提供了一种解决LeetCode上连续子数组和问题的有效方法,采用O(n)的时间复杂度。通过使用前缀和及哈希映射记录前缀和的余数来快速判断是否存在满足条件的连续子数组。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

https://leetcode.com/problems/continuous-subarray-sum/
在这里插入图片描述

题解

没有想到 O(n) 的方法,于是直奔答案:

参考1:【宫水三叶】拓展到求方案数问题
参考2:证明+动图:帮你吃透本题

核心思想:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
草稿:
在这里插入图片描述

class Solution {
    public boolean checkSubarraySum(int[] nums, int k) {
        int[] sum = new int[nums.length];
        sum[0] = nums[0];
        for (int i = 1; i < nums.length; i++) {
            sum[i] = sum[i - 1] + nums[i];
        }
        HashMap<Integer, Integer> map = new HashMap<>(); // (从0开始的前缀和%k,对应的结束下标)
        map.put(0, -1); // e.g. nums=[2,4,7]
        for (int i = 0; i < nums.length; i++) {
            if (map.containsKey(sum[i] % k)) {
                if (i - map.get(sum[i] % k) >= 2) return true;
            } else {
                map.put(sum[i] % k, i);
            }
        }
        return false;
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值