CV
single6
这个作者很懒,什么都没留下…
展开
-
街景字符编码识别(task6)模型集成
集成学习方法 在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。由于深度学习模型一般需要较长的训练周期,如果硬件条件不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。 10折交叉验证,训练得到10个CNN模型:每个模型选取一个不同的验证集,求出后取均值; Dropout可以作为训练深度神经网络的一种技巧。在每个训练批次中,通过随机让一部分的节点停止工作。同时在预测的过程中让所有原创 2020-06-02 22:23:17 · 302 阅读 · 0 评论 -
街景字符编码识别(四)—— 模型训练与验证
模型训练与验证模型训练模型加载和保存模型调参流程 模型训练 模型加载和保存 模型调参流程 模型训练:构造训练集和验证集,每轮进行训练和验证,并根据最优验证集精度保存模型,代码如下: train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=10, shuffle=False, num_workers=0, ) val_loader = torch.utils.data.DataL原创 2020-05-30 22:55:35 · 332 阅读 · 0 评论 -
anaconda加载torch/torchvision库出现CondaHTTPError/An HTTP error问题解决办法
An HTTP error 问题 conda httperror http none none for url none Anaconda更新失败 在conda安装好之后,默认的镜像是官方的,由于官网的镜像在境外,访问太慢或者不能访问,为了能够加快访问的速度,这里选择了清华的的镜像。但是之前搜索的镜像主要是下面,实际操作时还是会出现An HTTP error occured when trying to retrieve this URL.HTTP errors are often intermittent原创 2020-05-27 22:31:53 · 564 阅读 · 0 评论 -
街景字符识别编码- 字符识别模型
字符识别模型CNN模型pytorch代码构建CNN模型pytorch代码构建CNN模型 CNN模型 pytorch代码构建CNN模型 CNN即卷积神经网络,是一种层次模型,输入的是原始的像素数据,CNN通过卷积、池化、非线性激活函数和全连接层构成。 层级结构主要是数据输入层/ Input layer,卷积计算层/ CONV layer,ReLU激励层 / ReLU layer,池化层 / Pooling layer,全,连接层 / FC layer; CNN作为一种端到端的结构。在CNN训练的过程中是直接从原创 2020-05-26 21:47:12 · 372 阅读 · 0 评论 -
数据读取与扩增
数据读取与扩增数据读取数据扩增方法读取给定数据1、数据读取2、数据扩增方法3、Pytorch读取赛题数据 数据读取 数据扩增方法 读取给定数据 1、数据读取 这次比赛主要是识别图像中的字符,所以首先需要完成对数据的读取操作,在Python中有很多库可以完成数据读取的操作,比较常见的有Pillow和OpenCV。 Pillow是Python图像处理函式库(PIL)的一个分支,提供了常见的图像读取和处理的操作,而且可以与ipython notebook无缝集成。pillow文档 # 导入Pillow库 from原创 2020-05-23 22:47:22 · 229 阅读 · 0 评论 -
DataWhale–CV入门训练
DataWhale–CV入门训练赛题目的赛题数据来源评测标准结果提交解题思路 赛题目的 通过零基础入门CV之街道字符识别引导入门,,提高对数据建模能力。以计算机视觉中字符识别为背景,预测街道字符编码,这是一个典型的字符识别问题,赛题数据采用公开数据集SVHN,因此可以选择很多相应的paper作为思路参考。 赛题数据来源 源自Google街景图像中的门牌号数据集(SVHN),并根据一定方式采样得到比赛数据集。该数据来自真实场景的门牌号。训练集数据包括3W张照片,验证集数据包括1W张照片,每张照片包括颜色图像和原创 2020-05-20 20:09:38 · 265 阅读 · 1 评论