K-multiple-means: A multiple-means clustering method with specified K clusters
摘要:
本文对于K-means方法做了拓展,使其应用于多类别的聚类。之前的K-means聚类只使用一个中心对所有类别的数据进行建模。但是由于捕捉不到非凸显模式以及某些类别由多个子类组成,不能由单个原型来表示。
提出方法KMM,将具有多个子类的数据点归入指定的k群(group the datapoints with multiple sub-cluster means into specified k clusters.)
点:
1、发现了多均值表示的原始数据的分割备件被建模为一个具有受限拉布拉斯rank的双点图分割问题。
2、展示KMM与K-means聚类之间的理论分析
结果展示数据集:合成和著名的真实世界数据集,Wine, Ecoli, BinAlpha, Palm, Abalone, HTRU2