9月2日论文

本文提出了一种名为K-multiple-means的聚类方法,扩展了传统的K-means,能够处理多类别的数据聚类问题。KMM解决了K-means在处理具有多个子类别的类别时的局限,将其建模为具有受限拉布拉斯rank的双点图分割问题。通过理论分析比较了KMM与K-means的差异,并在多种合成和真实世界数据集上展示了其有效性和应用潜力,如Wine、Ecoli等。
摘要由CSDN通过智能技术生成

K-multiple-means: A multiple-means clustering method with specified K clusters

摘要:
本文对于K-means方法做了拓展,使其应用于多类别的聚类。之前的K-means聚类只使用一个中心对所有类别的数据进行建模。但是由于捕捉不到非凸显模式以及某些类别由多个子类组成,不能由单个原型来表示。
提出方法KMM,将具有多个子类的数据点归入指定的k群(group the datapoints with multiple sub-cluster means into specified k clusters.)
点:
1、发现了多均值表示的原始数据的分割备件被建模为一个具有受限拉布拉斯rank的双点图分割问题。
2、展示KMM与K-means聚类之间的理论分析
结果展示数据集:合成和著名的真实世界数据集,Wine, Ecoli, BinAlpha, Palm, Abalone, HTRU2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值