tensorflow+cuda+linux mint开发环境搭建

cuda安装

在ubantu或者linux mint上面安装cuda时,首先要进入系统管理,然后进入驱动管理器,更新驱动(Nvidia推荐)。

首先安装pip:
输入命令行sudo apt-get install python-pip python-dev
安装自带gpu的tensorflow版本(0.7)
sudo pip install http://7u2rod.com1.z0.glb.clouddn.com/tensorflow-0.7.1-cp27-none-linux_x86_64.whl
下载并安装 Cuda Toolkit 7.5
下载文件(net版本)
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_7.5-18_amd64.deb
保持网络连接
cd到文件所在的文件夹
执行命令
sudo dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda
这里要安装一个G左右的文件所以一定要保证网速不要太慢哈
cuda安装成功
系统重新启动(一定要重启,不然之后configure还是找不到安装路径的)

继续下载cudnn 4.0版本文件
http://developer.download.nvidia.com/compute/machine-learning/cudnn/secure/v4/prod/cudnn-7.0-linux-x64-v4.0-prod.tgz?autho=1458546047_5057d3bd2a59304436d211e057ee1b0b&file=cudnn-7.0-linux-x64-v4.0-prod.tgz
解压压缩包到当前文件夹
将文件夹内的所有文件与内文件夹复制到 cuda的目录中,/usr/local/cuda
(分别将include中文件拷贝到include文件夹中,将lib64中文件拷贝到lib64文件夹中)
配置环境变量:
sudo gedit /etc/profile
在弹出的文件末尾加入:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64" 
export CUDA_HOME=/usr/local/cuda
关掉文件之后
source /etc/profile(每次开机重启都需要输入)

安装依赖,打开终端执行命令
sudo -i
sudo apt-get install python-numpy swig python-dev
cd 到tensorflow-master文件夹(没下载的一定要下载,下载后解压(https://github.com/tensorflow/tensorflow))

./configure

Please specify the location of python. [Default is /usr/bin/python]: 
Do you wish to build TensorFlow with GPU support? [y/N] y
GPU support will be enabled for TensorFlow
Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave empty to use system default]: 7.5
Please specify the location where CUDA 7.5 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: 
Please specify the Cudnn version you want to use. [Leave empty to use system default]: 4.0.7
Please specify the location where cuDNN 4.0.7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: 
Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size.
[Default is: "3.5,5.2"]: 3.5
Setting up Cuda include
Setting up Cuda lib64
Setting up Cuda bin
Setting up Cuda nvvm
Configuration finished

回车即 默认(default)

解决非root情况下运行错误的问题
sudo ldconfig /usr/local/cuda/lib64

Tensorflow安装
pip安装:在linux下输入命令行sudo apt-get install python-pip python-dev或sudo apt-get install python-pip和sudo apt-get install python-dev
命令行使用技巧:直接再输入pip就可以验证pip是否安装完成,每一次输入命令行之后,就可以参考该条命令行的用法。
tensorflow安装:在Linux下输入命令行 sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.8.0rc0-cp27-none-linux_x86_64.whl(仅仅CPU)
在linux下输入命令行$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.8.0rc0-cp27-none-linux_x86_64.whl(在GPU下)(版本比较高,需要翻墙,如果不能翻墙,可以换成版本较低的,相应的将0.8.0rc0换成0.7.1)
sudo pip install   http://7u2rod.com1.z0.glb.clouddn.com/tensorflow-0.7.1-cp27-none-linux_x86_64.whl
还得安装github:输入命令行sudo apt-get install git
然后在github上找到tensorflow的源代码,再输入命令行git clone tensorflow的源代码地址
运行tensorflow:在Terminal下输入命令行
python
import tensorflow
import tensorflow as tf



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值