HDU 2243 考研路茫茫――单词情结 (AC自动机 + dp)

HDU 2243 考研路茫茫――单词情结

题意:给定一些词根,如果一个单词包含有词根,则认为是有效的。现在问长度不超过L的单词里面,有多少有效的单词?

思路:这道题和 POJ 2778 是同样的思路。POJ 2778是要找出长度为L的单词里面有多少无效的单词。那么根据同样的方法构造矩阵,然后所有无效的单词个数为 A + A^2 + ... + A^l 个。而所有单词的个数为26 + 26^2 + … + 26^l 个。两个减一下即为答案。
矩阵连乘求和:I + A^2 + A^3 + ... + A^n
    1. 构造矩阵
        |A I|
        |0 I|
    2. 分治法
        n为偶数,例如n = 6时
        A + A^2 + A^3 + A^4 + A^5 + A^6 = (A + A^2 + A^3) + A^3*(A + A^2 + A^3)
        n为奇数,例如n = 5时
        A + A^2 + A^3 + A^4 + A^5 = (A + A^2) + A^2*(A + A^2) + A^5

代码:
/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
#define INF (1<<30)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, n) for (int i = 0; i < n; i++)
#define debug puts("===============")
typedef long long ll;
typedef unsigned long long ULL;
using namespace std;
const int maxn = 65;
const int maxm = 65;
struct Matrix {
    int n, m;
    ULL a[maxn][maxm];
    void clear() {
        n = m = 0;
        memset(a, 0, sizeof(a));
    }
    Matrix operator * (const Matrix &b) const { //实现矩阵乘法
        Matrix tmp;
        tmp.n = n;
        tmp.m = b.m;
        for (int i = 0; i < n; i++)
            for (int j = 0; j < b.m; j++) tmp.a[i][j] = 0;
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++) {
                if (!a[i][j]) continue;
                for (int k = 0; k < b.m; k++)
                    tmp.a[i][k] += a[i][j] * b.a[j][k];
            }
        return tmp;
    }
    Matrix operator + (const Matrix &b) const {
        Matrix tmp;
        tmp.n = n;
        tmp.m = m;
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                tmp.a[i][j] = a[i][j] + b.a[i][j];
        return tmp;
    }
    void Copy(const Matrix &b) {
        n = b.n, m = b.m;
        for (int i = 0; i < n; i++)
            for(int j = 0; j < m; j++) a[i][j] = b.a[i][j];
    }
    void unit(int sz) {
        n = m = sz;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) a[i][j] = 0;
            a[i][i] = 1;
        }
    }
} A, res;

const int maxnode = 30 * 26;
const int charset = 26;
struct ACAutomaton {
    int ch[maxnode][charset];
    int fail[maxnode];
    int Q[maxnode];
    int val[maxnode];
    int sz;
    int ID[128];
    void init() {
        fail[0] = 0;
        for (int i = 0; i < charset; i++) ID[i + 'a'] = i;
    }
    void reset() {
        sz = 1;
        memset(ch[0], 0, sizeof(ch[0]));
    }
    void Insert(char* s, int key) {
        int u = 0;
        for (; *s; s++) {
            int c = ID[*s];
            if (!ch[u][c]) {
                memset(ch[sz], 0, sizeof(ch[sz]));
                val[sz] = 0;
                ch[u][c] = sz++;
            }
            u = ch[u][c];
        }
        val[u] = key;
    }
    void Construct () {
        int *s = Q, *e = Q;
        for (int i = 0; i < charset; i++) {
            if (ch[0][i]) {
                *e++ = ch[0][i];
                fail[ch[0][i]] = 0;
            }
        }
        while(s != e) {
            int u = *s++;
            if (val[fail[u]]) val[u] = 1;
            for (int i = 0; i < charset; i++) {
                int &v = ch[u][i];
                if (v) {
                    *e++ = v;
                    fail[v] = ch[fail[u]][i];
                } else {
                    v = ch[fail[u]][i];
                }
            }
        }
    }

    void work() {
        for (int i = 0; i < sz; i++) {
            for (int j = 0; j < charset; j++) {
                if (!val[i] && !val[ch[i][j]]) {
                    A.a[ch[i][j]][i]++;
                }
            }
        }
    }
} AC;

Matrix Matrix_pow(Matrix A, ll k) {
    res.clear();
    res.n = res.m = AC.sz;
    for (int i = 0; i < AC.sz; i++) res.a[i][i] = 1;
    while(k) {
        if (k & 1) res.Copy(res * A);
        A.Copy(A * A);
        k >>= 1;
    }
    return res;
}
void out() {
    for (int i = 0; i < A.n; i++) {
        for (int j = 0; j < A.m; j++) {
            printf("%2d ", res.a[i][j]);
        }
        cout << endl;
    }
}
Matrix Matrix_Bpow(Matrix A, ll k) {
    Matrix ans, I, tmp;
    ans.clear();
    ans.n = ans.m = A.n;
    I.unit(A.n);
    tmp.unit(A.n);
    while(k > 0) {
        if (k & 1) ans.Copy(ans * A + tmp);
        tmp.Copy(tmp * (I + A));
        A.Copy(A * A);
        k >>= 1;
    }
    return ans;
}
int main () {
    int n;
    ll l;
    char str[10];
    AC.init();
    while(~scanf("%d%I64d", &n, &l)) {
        A.clear();
        AC.reset();
        for (int i = 0; i < n; i++) {
            scanf("%s", str);
            AC.Insert(str, 1);
        }
        int sz = AC.sz;
        A.n = A.m = sz;
        AC.Construct();
        AC.work();
        //分治法
        res = Matrix_Bpow(A, l + 1);

        //out();
        /* 构造矩阵
        //得到1 + A + A^2 + A^3 + ... + A^l
        for (int i = 0; i < sz; i++) A.a[i][i + sz] = A.a[i + sz][i + sz] = 1;
        res = Matrix_pow(A, l + 1);
        */
        ULL ans = 0;
        for (int i = 0; i < sz; i++) ans += res.a[i][0];
        ans--;
        //得到1 + 26 + 26^2 + ... + 26^l
        A.clear();
        A.n = A.m = 2;
        A.a[0][0] = 26, A.a[0][1] = A.a[1][1] = 1;
        A = Matrix_pow(A, l + 1);
        ULL tot = A.a[0][1] - 1;
        printf("%I64u\n", tot - ans);
    }
    return 0;
}



  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值