1. 环境配置建议使用虚拟环境
conda env list #查看pyhton环境列表
conda activate env_name #激活所需使用的python环境
2. 安装cuda以及cudnn
2.1 安装cuda
conda install cudatoolkit=10.2
安装过程与结果如下:
2.2 安装cudnn
conda install cudnn=7.6.5
安装过程与结果如下:
2.3 conda安装的cudatoolkit与Nvidia官方提供的cudatoolkit的区别
可见这个博主的https://blog.csdn.net/qq_40947610/article/details/114707085博客
3. 安装以前版本的pytorch
见官方网站https://pytorch.org/get-started/previous-versions/
找到自己想要安装的版本(以1.8.0为例)
根据之前选择的cuda版本选择相应的命令即可,因为之前下载的10.2版本,所以使用
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch
亲测速度不是很慢,使用pip list查看安装包
4. 测试pytorch
import torch
print("hello pytorch {}".format(torch.__version__))
结果如下,证明安装完成