CS229 lecture4 笔记

1. 局部加权线性回归

  1. 线性回归是一种参数学习算法,而局部加权线性回归是非参数学习算法
    也就是说其数据/参数的个数(或存储空间)需要随着数据集的大小增长
  2. 适用情况:数据集维度较低但数据量很大

2. 逻辑回归

  1. 尽管与线性回归的表达式相同,其区别在于θ的定义发生了变化(?)

3. 牛顿迭代法

  1. 梯度上升方法需要很多次迭代才能最终收敛,而牛顿方法比用于优化θ值的梯度上升法更加快速

  2. 接近最小值时牛顿迭代收敛十分迅速,这也就是为什么牛顿法所需收敛次数较少

  3. 牛顿法的缺点:在高维问题中,如果θ是向量,那么牛顿法的每一步都将十分昂贵。(因为这时将涉及矩阵求逆)

  4. 原理:把f(x0)在点x0的某邻域内展开成泰勒级数在这里插入图片描述
    取其线性部分(即泰勒展开的前两项),并令其等于0,在这里插入图片描述
    以此作为非线性方程的近似方程,若在这里插入图片描述
    则其解为在这里插入图片描述

    这样,得到牛顿迭代法的一个迭代关系式:在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值