1. 局部加权线性回归
- 线性回归是一种参数学习算法,而局部加权线性回归是非参数学习算法
也就是说其数据/参数的个数(或存储空间)需要随着数据集的大小增长, - 适用情况:数据集维度较低但数据量很大
2. 逻辑回归
- 尽管与线性回归的表达式相同,其区别在于θ的定义发生了变化(?)
3. 牛顿迭代法
-
梯度上升方法需要很多次迭代才能最终收敛,而牛顿方法比用于优化θ值的梯度上升法更加快速
-
接近最小值时牛顿迭代收敛十分迅速,这也就是为什么牛顿法所需收敛次数较少
-
牛顿法的缺点:在高维问题中,如果θ是向量,那么牛顿法的每一步都将十分昂贵。(因为这时将涉及矩阵求逆)
-
原理:把f(x0)在点x0的某邻域内展开成泰勒级数
取其线性部分(即泰勒展开的前两项),并令其等于0,
以此作为非线性方程的近似方程,若
则其解为
。
这样,得到牛顿迭代法的一个迭代关系式: