先看题目
题目描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n − 1 n-1 n−1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 1 1 1 ,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有 3 3 3 种果子,数目依次为 1 1 1 , 2 2 2 , 9 9 9 。可以先将 1 1 1 、 2 2 2 堆合并,新堆数目为 3 3 3 ,耗费体力为 3 3 3 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12 12 12 ,耗费体力为 12 12 12 。所以多多总共耗费体力 = 3 + 12 = 15 =3+12=15 =3+12=15 。可以证明 15 15 15 为最小的体力耗费值。
输入格式
共两行。
第一行是一个整数
n
(
1
≤
n
≤
10000
)
n(1\leq n\leq 10000)
n(1≤n≤10000) ,表示果子的种类数。
第二行包含 n n n 个整数,用空格分隔,第 i i i 个整数 a i ( 1 ≤ a i ≤ 20000 ) a_i(1\leq a_i\leq 20000) ai(1≤ai≤20000) 是第 i i i 种果子的数目。
输出格式
一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2 31 2^{31} 231 。
样例 #1
样例输入 #1
3
1 2 9
样例输出 #1
15
提示
对于 30 % 30\% 30% 的数据,保证有 n ≤ 1000 n \le 1000 n≤1000:
对于 50 % 50\% 50% 的数据,保证有 n ≤ 5000 n \le 5000 n≤5000;
对于全部的数据,保证有 n ≤ 10000 n \le 10000 n≤10000。
解法梳理
贪心就得了!
贪心思路:每次都选数目最小的两堆进行合并。
本来就是提高组的题,也要用高级的方法,蒟蒻才用数组加排序。
stl \boxed{\operatorname{stl}} stl
仔细想一想,能做到自动排序的容器是哪个?答案当然是 multiset \operatorname{multiset} multiset 多重集。
一位同学曰:有种东西叫 priority queue \operatorname{priority\ queue} priority queue 优先队列。
如果想了解这种做法请先关注我,下次会讲这道题的优先队列解法。
好了,理论存在,只差实践。
AC Code
#include <bits/stdc++.h>
#define int long long
using namespace std;
multiset<int> a;
int n;
int x;
int ans;
signed main()
{
cin >> n;
for(int i = 1;i <= n;i++)
{
cin >> x;
a.insert(x);
}
while(a.size() > 1)
{
int tmp1 = *a.begin();
int tmp2 = *(++a.begin());
/*
千万别写成 *(a.begin()++)
警钟敲烂,注意顺序!
我踩过的坑你们不许踩,调了半小时才调出来
*/
a.erase(a.begin());
a.erase(a.begin());
a.insert(tmp1 + tmp2);
ans += tmp1 + tmp2;
}
cout << ans;
return 0;
}