我们的口号是:使用最简洁的代码,完成AC:)
题目介绍
实现获取 下一个排列 的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。
如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
必须 原地 修改,只允许使用额外常数空间。
示例 1:
输入:nums = [1,2,3]
输出:[1,3,2]
示例 2:
输入:nums = [3,2,1]
输出:[1,2,3]
示例 3:
输入:nums = [1,1,5]
输出:[1,5,1]
示例4:
输入:nums = [1]
输出:[1]
提示
1 <= nums.length <= 100
0 <= nums[i] <= 100
题目分析
这个题目是一个找规律的题,但是分析一下会看出解题思路肯定在找到一个合适的。
我们可以制定这样的策略:
- 从后往前寻找到第一个升序对[i,j],调换该对是题目非最优解
- 再寻找在升序对的右侧,最小的且在升序对区间内的元素k
- 交换i、k,获得更优解
- 此时j后元素为降序,对j后的元素进行转制,转变为升序,获得最优解
python代码
class Solution:
def nextPermutation(self, nums: List[int]) -> None:
"""
Do not return anything, modify nums in-place instead.
"""
n = len(nums)
k = i = len(nums) - 1
while i != 0 and nums[i-1] >= nums[i]:
i -= 1
if i == 0:
nums.reverse()
return
j = i - 1
while nums[k] <= nums[j]:
k -= 1
nums[j], nums[k] = nums[k], nums[j]
l, r = k + 1, len(nums) - 1
while l < r:
nums[l], nums[k] = nums[k], nums[l]
l += 1
r += 1