推荐系统中的冷启动分为物料冷启动和用户冷启动。用户冷启动主要是针对新用户,但有时候也用于低活用户拉活。
物料冷启动主要是让优质物料得到快速下发,让模型可以迅速捕获到用户对该物料的关注。
本文将详细讲解用户冷启动和物料冷启动。
1、用户冷启动
用户冷启动就是通过物料钩子、注册信息、多域信息、联邦学习等各种技巧去迅速获取用户的兴趣点实现个性化推荐,激发用户的留存。此外针对新用户还需要考虑定期刺激用户兴趣,不断用优质物料去试探用户,甚至做到兴趣的流转和承接,迅速抓住用户的兴趣,提高用户黏性。比如,针对信息流推送业务的用户进行冷启动,当一个新用户点击某条推送物料后,用户会迅速进入信息流的某个业务界面(如图文或者视频界面),这时候,对应的业务界面也要做好对应的承接推荐,继续给用户优质的物料,让用户深入地使用该产品,而不是用户点完一个物料以后就完毕了。因此,对承接页的物料展示位的填充就很讲究了,首先,基于推送的I2I物料肯定是要有的;其次,用户的其他兴趣点物料和高热度物料也要着重考虑。同时,对于相同的用户冷启动“打法”,除了针对新用户,也可以定期针对低活用户进行拉活冷启动。用户流失其实是一个常见的问题,关键还是要分析用户为什么流失的问题,比如用户物料兴趣得不到满足,有违规内容,App的生态运转不良,竞品用其他手段拉走了用户等。通过分析得到问题后,就要针对这部分低活用户进行类似冷启动的“打法”,并且做好一系列的兴趣承接工作让用户重新回到App里面。
2、物料冷启动
物料冷启动主要是针对新入库不久的物料,让其得到迅速下发,从而筛选出好的物料,产生流量的“滚雪球”效应。物料冷启动方法很多,主要包括用户粉丝冷启动、物料基础信息冷启动、物料相似性冷启动和物料进退场机制(具体请阅读《推荐系统全链路设计:原理解读与业务实践》一书)。
现在的主流“打法”是物料进退场机制(也称作爬坡机制)。物料进退场机制主要是为每个物料设置一级级的限制,然后就是设置物料爬坡的限制,之后再根据各个业务情况去设置更进一步的流量筛选条件,直到最后物料流入正常流量库。下图展现了整个冷启动物料到正常物料的流程。
图11-1 冷启动物料到自然流量物料库的转换
冷启动流量需要考虑流量放量的速度和物料、用户的基础特征,相比自然流量的模型,冷启动环节的模型需要忽略反馈数据,如点击、下发、点赞、评论等。
3、PID算法
在流量分发的过程中,肯定不可能一次性爆发式地分发下