一、AI创作技术原理
(一)机器学习基础
- 监督学习
- 监督学习是AI创作中的一种重要技术。在音乐创作中,例如,我们可以有一个包含大量音乐作品及其相关标签(如音乐风格、情感类型等)的数据集。算法会学习这些数据中的模式,将音乐的特征(如旋律、和声、节奏等)与标签进行关联。例如,对于一首被标记为“欢快”的流行歌曲,算法会学习到其节奏可能较快,旋律音程跳跃较大,和声较为明亮等特征。当要创作一首“欢快”的音乐时,算法就可以根据学习到的这些特征来生成相应的音乐元素。
- 在图像创作方面,监督学习可以用于图像分类任务,如识别一幅画是风景画还是人物画。模型通过学习大量已标记的图像数据,掌握不同类型图像的特征,然后能够对新的图像进行分类或根据分类要求生成相应的图像元素。
- 无监督学习
- 无监督学习在AI创作中主要用于发现数据中的隐藏结构。在文本创作中,无监督学习算法可以对大量文本进行聚类分析。例如,对于一个包含各种新闻文章的语料库,算法可以根据文章的主题、用词等特征将它们聚类成不同的组,如政治新闻组、娱乐新闻组等。在音乐创作中,无监督学习可以发现不同音乐作品之间的相似性,而不需要预先定义的标签。例如,它可以找到一些具有相似旋律模式但来自不同音乐风格的作品,这有助于在创作中融合不同风格的音乐元素。
- 强化学习
- 强化学习通过让AI与环境进行交互并根据奖励反馈来学习最优的行为策略。在游戏创作中,例如,AI可以通过不断地玩游戏并根据游戏的得分(奖励)来学习如何制定最佳的游戏策略,从而可以用于创作具有挑战性和趣味性的游戏关卡。在音乐创作中,强化学习可以根据听众的反馈(如播放量、点赞数等作为奖励信号)来调整音乐创作策略,以创作出更受听众欢迎的音乐作品。
(二)神经网络
- 多层感知机(MLP)