幸运数,c语言幸运数,算法比赛题


首先先描述题目

标题:幸运数
    幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成。
    首先从1开始写出自然数1,2,3,4,5,6,....
    1 就是第一个幸运数。
    我们从2这个数开始。把所有序号能被2整除的项删除,变为:
    1 _ 3 _ 5 _ 7 _ 9 ....
    把它们缩紧,重新记序,为:
    1 3 5 7 9 .... 。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11, 17, ...
    此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,...) 
    最后剩下的序列类似:
    1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, ...


我这里写的代码 没有遵守题目要求 , 而是把所有的 1-n 之间的幸运数输出并计算个数

1 不算幸运数


就这个题而言 我们可以运用筛选法的原理 也就是素数打表的思想 来解决

  如果序号可以整除的话 就让对应的位置赋值为0  然后下次循环 进行筛选不为0 的下一项


下面的源代码

/*
 幸运数  
*/
#include<stdio.h>
#include<string.h>

const int N=1000;
int a[N];
int n,m;
void input()
{
	for(int i=1;i<=n;i++)
		a[i]=i;
}
void output()
{
	int i,ans=0;
	for(i=m;i<n;i++)
		if(a[i]){
			printf("%d ",a[i]);
			if(i==1) continue;
			ans++;
		}	
		printf("\n");
	printf("%d\n",ans);
}
void Luckly_Num()
{
	int i,j,k,cout,temp,sum=1;
	for(i=2;i<=n;i++)
	{
		if(!a[i])
			continue; 
//		for(k=i;a[k]==0;k++)
//			 sum++;
		temp=a[i];
		for(j=1,cout=0;j<=n;j++)
		{
			if(a[j])
			{
				cout++;
				if(cout%temp==0)
				{
					a[j]=0;
				}		
			}
		}
	}
}
int main()
{
	int i,j;
	while(scanf("%d %d",&m,&n))
	{
		
		input();//³õʼ»¯
		Luckly_Num(); //ºËÐÄ 
		output();// Êä³ö 
	}
}



我这里把整个运行步骤给输出出来了:


### 关于幸运字的定义与判断 在蓝桥杯竞赛中,“幸运字”的定义通常是指满足特定条件的一类整。例如,在某些目中,可能规定“幸运字”是由若干个连续的相同字组成的正整;而在另一些情况下,则可能是由某种特殊规律生成的序列中的成员。 以下是基于 C 语言实现的一个典型幸运字判断方法: #### 示例代码:判断一个字是否为幸运字 假设我们定义“幸运字”为仅包含字 `8` 和 `6` 的正整[^1]。 ```c #include <stdio.h> #include <stdbool.h> // 判断函:检查给定字是否只包含 '8' 或 '6' bool isLuckyNumber(int num) { while (num > 0) { int digit = num % 10; // 获取当前最低位字 if (digit != 8 && digit != 6) { // 如果不是 8 或者 6 return false; } num /= 10; // 移除最低位 } return true; // 所有位都符合条件 } int main() { int number; printf("请输入一个正整: "); scanf("%d", &number); if (isLuckyNumber(number)) { printf("%d 是幸运字。\n", number); } else { printf("%d 不是幸运字。\n", number); } return 0; } ``` 上述代码通过逐位提取输入字的每一位并验证其合法性来完成判断过程。如果某一位既不等于 `8` 也不等于 `6`,则该字被判定为非幸运字。 --- #### 另一种情况下的解法 假如目要求的是另一种形式的幸运字——比如能够表示成 `(p - 1) * (q - 1) - 1` 形式的最大不可凑出值(其中 p 和 q 互质),可以参考如下逻辑实现[^2]: ```c #include <stdio.h> // 计算两个互质整的最大无法凑出值 int maxUnreachableValue(int p, int q) { return (p - 1) * (q - 1) - 1; } int main() { int p, q; printf("请输入两个互质的正整 p 和 q:"); scanf("%d%d", &p, &q); int result = maxUnreachableValue(p, q); printf("对于 (%d, %d),最大的无法凑出的值是:%d\n", p, q, result); return 0; } ``` 此程序利用了小学奥的相关结论[(p−1)(q−1)−1],快速计算出了目标结果。 --- #### 总结说明 无论是哪种类型的幸运字问,核心在于清晰理解意以及合理设计算法结构。以上两种方案分别适用于不同场景下对“幸运字”的定义和求解需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值