问题 C: 三元排序
时间限制: 1 Sec 内存限制: 128 MB提交: 101 解决: 23
[ 提交][ 状态][ 讨论版]
题目描述
一次交换操作是指将数列中的两个数位置对调。给出一个只有1、2、3三个元素的数列,你需要通过有限次交换使数列中的数从小到大排列。请求出最少需要的交换次数。
输入
第一行读入一个数N(N<=100000),它代表数列的长度。
以下N行每行一个数。每个数都只可能是1、2、3中的一个。
以下N行每行一个数。每个数都只可能是1、2、3中的一个。
输出
将最少的交换次数输出
样例输入
9
2
2
1
3
3
3
2
3
1
样例输出
4
提示
最少交换次数, 上一次的数据是1000 这一次是10w
数据会超时,
原理一样, 统计1,2,3, 的数目, 扫描1, 去2 里扫,2没有去3, 同理2
增加限制条件以防TLE
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <math.h>
#include <cstring>
#include <string>
#include <queue>
#include <stack>
#include <stdlib.h>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <vector>
#define mem(a,b) memset(a,b,sizeof(a))
#define findx(x) lower_bound(b+1,b+1+bn,x)-b
#define FIN freopen("input.txt","r",stdin)
#define FOUT freopen("output.txt","w",stdout)
#define S1(n) scanf("%d",&n)
#define SL1(n) scanf("%I64d",&n)
#define S2(n,m) scanf("%d%d",&n,&m)
#define SL2(n,m) scanf("%I64d%I64d",&n,&m)
#define Pr(n) printf("%d\n",n)
using namespace std;
typedef long long ll;
const double PI=acos(-1);
const int INF=0x3f3f3f3f;
const double esp=1e-6;
const int maxn=1e5+5;
const int MOD=1e9+7;
const int mod=1e9+7;
int dir[5][2]={0,1,0,-1,1,0,-1,0};
int a[maxn];
int main()
{
int n,c,k1,k2,k3;
while (cin>>n)
{
ll ans=0;
k1=k2=k3=0;
memset(a,0,sizeof(a));
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
if (a[i]==1)
k1++;
if (a[i]==2)
k2++;
}
int m1=k1;
int m2=k2;
int m3=k1+k2;
int m4=m3;
c=k1+k2;
for (int i=1;i<=n;i++)
{
if (i>=m4+1)
break;
if (i>m1&&i<=m4)
{
if (a[i]!=2)
{
for (int j=c+1;j<=n;j++)
{
if (a[j]==2)
{
swap(a[j],a[i]);
c=j;
ans++;
break;
}
}
}
}
else if (i<=m1)
{
if (a[i]==2)
{
int j;
for (j=k1+1;j<=m4;j++)
{
if (a[j]==1)
{
swap(a[i],a[j]);
k1=j;
ans++;
break;
}
}
if (j>m4)
{
for (j=m3+1;j<=n;j++)
{
if (a[j]==1)
{
swap(a[i],a[j]);
m3=j;
ans++;
break;
}
}
}
}
else if (a[i]==3)
{
int j;
for (j=m3+1;j<=n;j++)
{
if (a[j]==1)
{
swap(a[i],a[j]);
m3=j;
ans++;
break;
}
}
if (j>n)
{
for (j=k1+1;j<=m4;j++)
{
if (a[j]==1)
{
swap(a[i],a[j]);
k1=j;
ans++;
break;
}
}
}
}
}
}
cout<<ans<<endl;
}
return 0;
}
123