石油大学OJ组队赛11 C 三元排序


问题 C: 三元排序

时间限制: 1 Sec   内存限制: 128 MB
提交: 101   解决: 23
[ 提交][ 状态][ 讨论版]

题目描述

 一次交换操作是指将数列中的两个数位置对调。给出一个只有1、2、3三个元素的数列,你需要通过有限次交换使数列中的数从小到大排列。请求出最少需要的交换次数。

输入

第一行读入一个数N(N<=100000),它代表数列的长度。
 以下N行每行一个数。每个数都只可能是1、2、3中的一个。

输出

将最少的交换次数输出

样例输入

9

2

2

1

3

3

3

2

3

1

样例输出

4

提示



最少交换次数,  上一次的数据是1000  这一次是10w  

数据会超时,


原理一样, 统计1,2,3, 的数目,    扫描1,  去2 里扫,2没有去3,  同理2

增加限制条件以防TLE


#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <math.h>
#include <cstring>                                                                                 
#include <string>
#include <queue>
#include <stack>
#include <stdlib.h>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <vector>
#define mem(a,b) memset(a,b,sizeof(a))
#define findx(x) lower_bound(b+1,b+1+bn,x)-b
#define FIN      freopen("input.txt","r",stdin)
#define FOUT     freopen("output.txt","w",stdout)
#define S1(n)    scanf("%d",&n)
#define SL1(n)   scanf("%I64d",&n)
#define S2(n,m)  scanf("%d%d",&n,&m)
#define SL2(n,m)  scanf("%I64d%I64d",&n,&m)
#define Pr(n)     printf("%d\n",n)
 
using namespace std;
typedef long long ll;   
const double PI=acos(-1);
const int INF=0x3f3f3f3f;
const double esp=1e-6;
const int maxn=1e5+5;
const int MOD=1e9+7;
const int mod=1e9+7;
int dir[5][2]={0,1,0,-1,1,0,-1,0};
 
int a[maxn];
int main()
{
    int n,c,k1,k2,k3;
    while (cin>>n)
    {
        ll ans=0;
        k1=k2=k3=0;
        memset(a,0,sizeof(a));
        for (int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            if (a[i]==1)
            k1++;
            if (a[i]==2)
            k2++;
        }
        int m1=k1;
        int m2=k2;
        int m3=k1+k2;
        int m4=m3;
        c=k1+k2;
        for (int i=1;i<=n;i++)
        {
            if (i>=m4+1)
            break;
            if (i>m1&&i<=m4)
            {
                if (a[i]!=2)
                {
                    for (int j=c+1;j<=n;j++)
                    {
                        if (a[j]==2)
                        {
                        swap(a[j],a[i]);
                        c=j;
                        ans++;
                        break;
                        } 
                    }
                }
            }
            else if (i<=m1)
            {
                if (a[i]==2)
                {
                    int j;
                    for (j=k1+1;j<=m4;j++)
                    {
                        if (a[j]==1)
                        {
                        swap(a[i],a[j]);
                        k1=j;
                        ans++;
                        break;
                        }   
                    }
                    if (j>m4)
                    {
                        for (j=m3+1;j<=n;j++)
                        {
                           if (a[j]==1)
                          {
                             swap(a[i],a[j]);
                             m3=j;
                             ans++;
                             break;
                          } 
                        }
                    }
                }
                else  if (a[i]==3)
                {
                    int j;
                    for (j=m3+1;j<=n;j++)
                        {
                           if (a[j]==1)
                          {
                             swap(a[i],a[j]);
                             m3=j;
                             ans++;
                             break;
                          } 
                        }
                        if (j>n)
                        {
                            for (j=k1+1;j<=m4;j++)
                            {
                                if (a[j]==1)
                                {
                                   swap(a[i],a[j]);
                                    k1=j;
                                     ans++;
                                     break;
                                }   
                            }
                        }               
                }
            }
         }
         cout<<ans<<endl;
   }
    return 0;
}


123

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值