@2018 牛客网暑期ACM多校训练营(第六场): J- Heritage of skywalkert

链接:https://www.nowcoder.com/acm/contest/144/J
来源:牛客网
 

skywalkert, the new legend of Beihang University ACM-ICPC Team, retired this year leaving a group of newbies again.
 

Rumor has it that he left a heritage when he left, and only the one who has at least 0.1% IQ(Intelligence Quotient) of his can obtain it.


To prove you have at least 0.1% IQ of skywalkert, you have to solve the following problem:

Given n positive integers, for all (i, j) where 1 ≤ i, j ≤ n and i ≠ j, output the maximum value among . means the Lowest Common Multiple.

输入描述:

The input starts with one line containing exactly one integer t which is the number of test cases. (1 ≤ t ≤ 50)

For each test case, the first line contains four integers n, A, B, C. (2 ≤ n ≤ 107, A, B, C are randomly selected in unsigned 32 bits integer range)

The n integers are obtained by calling the following function n times, the i-th result of which is ai, and we ensure all ai > 0. Please notice that for each test case x, y and z should be reset before being called.

No more than 5 cases have n greater than 2 x 106.

输出描述:

For each test case, output "Case #x: y" in one line (without quotes), where x is the test case number (starting from 1) and y is the maximum lcm.

 

示例1

输入

复制

2
2 1 2 3
5 3 4 8

输出

复制

Case #1: 68516050958
Case #2: 5751374352923604426

 

输入n,a,b,c根据 构造  获得an[] 数组

然后求数组内 两个数的 最大 LCM...

骚操作 nth_element  哈哈

作用就是, 把 某个元素放在该放的位置上,然后前面的都比他小,后面的都比他大...

sort  会超时....

我们  暴力后三十项--- 求 最大 LCM...

 

代码:

#include <iostream>
#include <bits/stdc++.h>

#define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,a,n) for(int i = n; i>=a;i--)
#define SI(x) scanf("%d",&x)
#define pb push_back

typedef unsigned long long ll;

const int maxn = 1e7+10;
using namespace std;
unsigned x,y,z;
unsigned tang()
{
    unsigned t;
    x^=x<<16;
    x^=x>>5;
    x^=x<<1;
    t = x;
    x = y;
    y = z;
    z = t^x^y;
    return z;
}
ll ans[maxn];
int main()
{
    int t;

    SI(t);
    int cot =0;
    int n,a,b,c;
    while(t--)
    {
        SI(n),SI(a),SI(b),SI(c);
        x = a;y = b;z = c;
        rep(i,0,n-1)
            ans[i]=tang();
        nth_element(ans,ans+max(0,n-100),ans+n);
        ll res = 0;
        rep(i,max(0,n-100),n-1)
        {
            rep(j,i+1,n-1)
            {
                ll temp = 1ll*ans[j]/__gcd(ans[i],ans[j])*ans[i];
                res =max(temp,res);
            }
        }
        printf("Case #%d: %llu\n",++cot,res);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值