异或dp--51nod1301 集合异或和

传送门

solution:

一道比较难想的dp吧,看了题解才知道题目的突破口就是这个性质:

A<B当且仅当A^B的最高位是1的那一位上B为1而A为0

 

有了这个性质就可以考虑异或dp

设f[i][j][0/1]表示当前处理到第i个数,A^B=j,B的第x位为0/1(x就是上面所说的最高位)的方案数

然后最外层枚举x,内层算出当前f数组,将j为2^x~2^(x+1)的f[max(n,m)][j][1]加到ans里

用滚动数组优化一下空间

具体细节看注释

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int mod=1e9+7;
int n,m,f[2][2048][2],ans,mx;

int main(){
	scanf("%d%d",&n,&m); mx=max(m,n);
	for(int i=0;(1<<i)<=mx;i++){//A^B的最高位为i 
		memset(f,0,sizeof f);
		int now=1,pre=0;
		f[pre][0][0]=1;
		for(int j=1;j<=mx;j++,now^=1,pre^=1){//枚举处理到了第j个 
			memcpy(f[now],f[pre],sizeof f[now]);
			int t=((j&(1<<i)))>0;//j这个数在i位上是不是1 
			for(int k=0;k<2048;k++){//枚举异或和 
				if(j<=n)//j这个数放到X中 
					(f[now][k][0]+=f[pre][k^j][0])%=mod,
					(f[now][k][1]+=f[pre][k^j][1])%=mod;
				if(j<=m)//j这个数放到Y中 
					 (f[now][k][0]+=f[pre][k^j][t])%=mod,
					 (f[now][k][1]+=f[pre][k^j][t^1])%=mod; 
			}
		}
		for(int j=(1<<i);j<(1<<(i+1));j++) (ans+=f[pre][j][1])%=mod;
	}
	printf("%d\n",ans);
	return 0; 
} 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值