Zookeeper 学习笔记

Zookeeper 学习笔记

1、Zookeeper 介绍

1.1、什么是Zookeeper

ZooKeeper 是⼀种分布式协调服务,⽤于管理⼤型主机。在分布式环境中协调和管理服务是⼀个复杂的过程。ZooKeeper 通过其简单的架构和 API 解决了这个问题。ZooKeeper 允许开发⼈员专注于核⼼应⽤程序逻辑,⽽不必担⼼应⽤程序的分布式特性。

1.2、Zookeeper的应⽤场景

场景一:分布式协调组件

Untitled

分布式协调中心 ZK 的 znode 节点:flag = true;

一旦节点发生改变,就会通知所有监听方改变自己的值 — watch机制、分布式锁、可以让分布式服务处于无状态

在分布式系统中,需要有 zookeeper 作为分布式协调组件,协调分布式系统中的状态。

场景二:分布式锁

zk在实现分布式锁上,可以做到强⼀致性,关于分布式锁相关的知识,在之后的 ZAB 协议中介绍。

场景三:无状态化的实现

Untitled

2、搭建Zookeeper服务器

2.1、安装Zookeeper

下载地址:https://www.apache.org/dyn/closer.lua/zookeeper/zookeeper-3.7.1/apache-zookeeper-3.7.1-bin.tar.gz

cd /usr/local/
# 将zookeeper安装包放在该目录下
mkdir zookeeper 
tar -zxvf apache-zookeeper-3.7.1-bin.tar.gz
# 进入conf目录
cd apache-zookeeper-3.7.1-bin/conf/
# 修改配置文件模板
vim zoo_sample.cfg
# 重命名配置文件名称 
mv zoo_sample.cfg zoo.cfg
# 进入bin目录
cd ../bin/
./zkServer.sh start ../conf/zoo.cfg

Untitled

2.2、zoo.cfg 配置⽂件说明

# zookeeper时间配置中的基本单位 (毫秒) 
tickTime=2000
# 允许follower初始化连接到leader的最⼤时⻓,它表示tickTime时间倍数 即:initLimit * tickTime
initLimit=10
# 允许follower与leader数据同步的最⼤时⻓,它表示tickTime时间倍数 即:syncLimit * tickTime
syncLimit=5
# zookeper数据存储⽬录及⽇志保存⽬录(如果没有指明dataLogDir,则⽇志也保存在这个⽂件中)
dataDir=/tmp/zookeeper
dataLogDir=/tmp/zookeeper
# 对客户端提供的端⼝号
clientPort=2181
# 单个客户端与zookeeper最⼤并发连接数 
maxClientCnxns=60
# 保存的数据快照数量,之外的将会被清除 
autopurge.snapRetainCount=3
# ⾃动触发清除任务时间间隔,⼩时为单位。默认为0,表示不⾃动清除。
autopurge.purgeInterval=1

2.3、Zookeeper服务器的操作命令

1、启动zk服务器:

./zkServer.sh start ../conf/zoo.cfg

2、查看zk服务器状态:

./zkServer.sh status ../conf/zoo.cfg

Untitled

3、停⽌zk服务器:

./zkServer.sh stop ../conf/zoo.cfg

Untitled

3、Zookeeper内部的数据模型

3.1、zk是如何保存数据的?

zk中的数据是保存在节点上的,节点就是znode,多个 znode 之间构成一棵树的目录结构。

Zookeeper 的数据模型是什么样子呢?类似于数据结构中的树,同时也很像文件系统的目录。

Untitled

树是由节点所组成的,Zookeeper 的数据存储也同样是基于节点,这种节点叫做 Znode

但是,不同于树的节点,Znode 的引⽤⽅式是路径引⽤,类似于⽂件路径:

/动物/猫 
/汽⻋/宝⻢

这样的层级结构,让每⼀个 Znode 节点拥有唯⼀的路径,就像命名空间⼀样对不同信息作出清晰的隔离。

Untitled

3.2、zk中的znode是什么样的结构?

zk 中的 znode,包含了四个部分:

1、data:保存数据

2、acl:权限,定义了什么样的⽤户能够操作这个节点,且能够进⾏怎样的操作。

  • c:create 创建权限,允许在该节点下创建⼦节点
  • w:write 更新权限,允许更新该节点的数据
  • r:read 读取权限,允许读取该节点的内容以及⼦节点的列表信息
  • d:delete 删除权限,允许删除该节点的⼦节点
  • a:admin 管理者权限,允许对该节点进⾏ acl 权限设置

3、stat:描述当前 znode 的元数据

Untitled

4、child:当前节点的⼦节点

3.3、zk中节点znode的类型

1、持久节点:

创建出的节点,在会话结束后依然存在。保存数据

Untitled

2、持久序号节点:

创建出的节点,根据先后顺序,会在节点之后带上⼀个数值,越往后执⾏数值越⼤,适⽤于分布式锁的应⽤场景- 单调递增

Untitled

3、临时节点:

临时节点是在会话结束后,⾃动被删除的,通过这个特性,zk可以实现服务注册与发现的效果。那么临时节点是如何维持⼼跳呢?

Untitled

Untitled

4、临时序号节点:

跟持久序号节点相同,适⽤于临时的分布式锁。

Untitled

5、Container节点(3.5.3版本新增):

Container 容器节点,当容器中没有任何⼦节点时,该容器节点会被 zk 定期删除(60s)。

Untitled

6、TTL节点:

可以指定节点的到期时间,到期后被 zk 定时删除。只能通过系统配置 zookeeper.extendedTypesEnabled=true 开启

3.4、zk的数据持久化

zk 的数据是运⾏在内存中的,zk 提供了两种持久化机制:

1、事务日志

zk 把执⾏的命令以⽇志形式保存在 dataLogDir 指定的路径中的⽂件(如果没有指定dataLogDir,则按 dataDir 指定的路径)。

2、数据快照

zk 会在⼀定的时间间隔内做⼀次内存数据的快照,把该时刻的内存数据保存在快照⽂件中。

zk 通过两种形式的持久化,在恢复时先恢复快照⽂件中的数据到内存中,再⽤⽇志⽂件中的数据做增量恢复,这样的恢复速度更快。

4、Zookeeper客户端(zkCli)的使⽤

# 启动命令
./zkCli.sh

4.1、多节点类型创建

  • 创建持久节点

Untitled

  • 创建持久序号节点

Untitled

  • 创建某个节点的子节点

Untitled

  • 创建临时节点

Untitled

  • 创建临时序号节点

Untitled

  • 创建容器节点

Untitled

4.2、查询节点

1、普通查询

Untitled

2、查询节点相关信息

  • cZxid:创建节点的事务ID
  • mZxid:修改节点的事务ID
  • pZxid:添加和删除⼦节点的事务ID
  • ctime:节点创建的时间
  • mtime: 节点最近修改的时间
  • dataVersion:节点内数据的版本,每更新⼀次数据,版本会+1
  • aclVersion:此节点的权限版本
  • ephemeralOwner:如果当前节点是临时节点,则该值是当前节点所有者的 sessionId。如果当前节点不是临时节点,则该值为零。
  • dataLength:节点内数据的⻓度
  • numChildren:该节点的⼦节点个数

Untitled

4.3、删除节点

1、普通删除

Untitled

2、乐观锁删除

Untitled

Untitled

4.4、权限设置

# 在会话一窗口设置账号和密码,并设置权限
addauth digest xiaoming:123456
create /test-node abc auth:xiaoming:123456:cdrwa

会话一:

Untitled

会话二:

Untitled

注意:

在另⼀个会话中必须先使⽤账号密码,才能拥有操作该节点的权限。

5、Curator客户端的使⽤

5.1、Curator介绍

Curator 是 Netflix 公司开源的⼀套 Zookeeper 客户端框架,Curator 是对 Zookeeper ⽀持最好的客户端框架。Curator 封装了⼤部分 Zookeeper 的功能,⽐如Leader 选举、分布式锁等,减少了技术⼈员在使⽤ Zookeeper 时的底层细节开发⼯作。

5.2、引⼊Curator

1、引入依赖:

<dependency>
  <groupId>org.apache.zookeeper</groupId>
  <artifactId>zookeeper</artifactId>
  <version>3.4.14</version>
  <exclusions>
    <exclusion>
      <groupId>org.slf4j</groupId>
      <artifactId>slf4j-api</artifactId>
    </exclusion>
    <exclusion>
      <groupId>org.slf4j</groupId>
      <artifactId>slf4j-log4j12</artifactId>
    </exclusion>
    <exclusion>
      <groupId>log4j</groupId>
      <artifactId>log4j</artifactId>
    </exclusion>
  </exclusions>
</dependency>

<dependency>
  <groupId>org.apache.curator</groupId>
  <artifactId>curator-framework</artifactId>
  <version>2.12.0</version>
  <exclusions>
    <exclusion>
      <groupId>org.apache.zookeeper</groupId>
      <artifactId>zookeeper</artifactId>
    </exclusion>
    <exclusion>
      <groupId>org.slf4j</groupId>
      <artifactId>slf4j-api</artifactId>
    </exclusion>
  </exclusions>
</dependency>

<dependency>
  <groupId>org.apache.curator</groupId>
  <artifactId>curator-recipes</artifactId>
  <version>2.12.0</version>
</dependency>

2、修改 application.properties 配置⽂件

curator.retryCount=5
curator.elapsedTimeMs=5000
curator.connectString=119.91.21.45:2183
curator.sessionTimeoutMs=60000
curator.connectionTimeoutMs=5000

3、注⼊配置Bean

@Data
@Component
@ConfigurationProperties(prefix = "curator")
public class WrapperZK {

    private int retryCount;

    private int elapsedTimeMs;

    private String connectString;

    private int sessionTimeoutMs;

    private int connectionTimeoutMs;
}

4、注⼊CuratorFramework

@Configuration
public class CuratorConfig {

    @Autowired
    WrapperZK wrapperZk;

    @Bean(initMethod = "start")
    public CuratorFramework curatorFramework() {
        return CuratorFrameworkFactory.newClient(
                wrapperZk.getConnectString(), 
                wrapperZk.getSessionTimeoutMs(), 
                wrapperZk.getConnectionTimeoutMs(), 
                new RetryNTimes(wrapperZk.getRetryCount(), wrapperZk.getElapsedTimeMs()));
    }
}

5.3、具体操作

创建节点

		/**
     * 创建节点
     * @throws Exception
     */
    @Test
    void createNode() throws Exception {
        // 添加持久节点
        String path = curatorFramework.create().forPath("/curator-node"); // 节点名称,注意需要以/开头

        // 添加临时序号节点
        // String path1 = curatorFramework.create().withMode(CreateMode.EPHEMERAL_SEQUENTIAL).forPath("/curator-node", "some-data".getBytes());
        System.out.println(String.format("curator create node :%s  successfully.", path));
        System.in.read();
    }

获取节点数据

		/**
     * 获取节点数据
     *
     * @throws Exception
     */
    @Test
    public void testGetData() throws Exception {
        byte[] bytes = curatorFramework.getData().forPath("/curator-node");
        System.out.println(new String(bytes));
    }

设置节点数据

		/**
     * 设置节点数据
     *
     * @throws Exception
     */
    @Test
    public void testSetData() throws Exception {
        curatorFramework.setData().forPath("/curator-node", "changed!".getBytes());
        byte[] bytes = curatorFramework.getData().forPath("/curator-node");
        System.out.println(new String(bytes));
    }

创建节点同时创建⽗节点

		/**
     * 创建节点同时创建⽗节点
     *
     * @throws Exception
     */
    @Test
    public void testCreateWithParent() throws Exception {
        String pathWithParent = "/node-parent/sub-node-1";
        String path = curatorFramework.create().creatingParentsIfNeeded().forPath(pathWithParent);
        System.out.println(String.format("curator create node :%s  successfully.", path));
    }

删除节点

		/**
     * 删除节点
     *
     * @throws Exception
     */
    @Test
    public void testDelete() throws Exception {
        String pathWithParent = "/node-parent";
        curatorFramework.delete().guaranteed().deletingChildrenIfNeeded().forPath(pathWithParent);
    }

6、zk实现分布式锁

6.1、zk中锁的种类

  • 读锁:⼤家都可以读,要想上读锁的前提:之前的锁没有写锁
  • 写锁:只有得到写锁的才能写。要想上写锁的前提是,之前没有任何锁。

6.2、zk如何上读锁

1、创建⼀个临时序号节点,节点的数据是read,表示是读锁

2、获取当前zk中序号⽐⾃⼰⼩的所有节点

3、判断最⼩节点是否是读锁:

  • 如果不是读锁的话,则上锁失败,为最⼩节点设置监听。阻塞等待,zk 的 watch 机制会当最⼩节点发⽣变化时通知当前节点,于是再执⾏第⼆步的流程
  • 如果是读锁的话,则上锁成功

Untitled

6.3、zk如何上写锁

1、创建⼀个临时序号节点,节点的数据是write,表示是写锁

2、获取zk中所有的⼦节点

3、判断⾃⼰是否是最⼩的节点:

  • 如果是,则上写锁成功
  • 如果不是,说明前⾯还有锁,则上锁失败,监听最⼩的节点,如果最⼩节点发生变化,则回到第⼆步。

Untitled

6.4、羊群效应

如果⽤上述的上锁⽅式,只要有节点发⽣变化,就会触发其他节点的监听事件,这样的话对zk的压⼒⾮常⼤,——⽺群效应。可以调整成链式监听。解决这个问题。

Untitled

6.5、curator实现读写锁

@SpringBootTest
public class TestReadWriteLock {

    @Autowired
    private CuratorFramework client;

    /**
     * 获取读锁
     *
     * @throws Exception
     */
    @Test
    void testGetReadLock() throws Exception {
        // 读写锁
        InterProcessReadWriteLock interProcessReadWriteLock = new InterProcessReadWriteLock(client, "/lock1");
        // 获取读锁对象
        InterProcessLock interProcessLock = interProcessReadWriteLock.readLock();
        System.out.println("等待获取读锁对象!");
        // 尝试获得锁
        interProcessLock.acquire();
        for (int i = 1; i <= 100; i++) {
            Thread.sleep(3000);
            System.out.println(i);
        }
        // 释放锁
        interProcessLock.release();
        System.out.println("等待释放锁!");
    }

    /**
     * 获取写锁
     *
     * @throws Exception
     */
    @Test
    void testGetWriteLock() throws Exception {
        // 读写锁
        InterProcessReadWriteLock interProcessReadWriteLock = new InterProcessReadWriteLock(client, "/lock1");
        // 获取写锁对象
        InterProcessLock interProcessLock = interProcessReadWriteLock.writeLock();
        System.out.println("等待获取写锁对象!");
        // 尝试获得锁
        interProcessLock.acquire();
        for (int i = 1; i <= 100; i++) {
            Thread.sleep(3000);
            System.out.println(i);
        }
        // 释放锁
        interProcessLock.release();
        System.out.println("等待释放锁!");
    }

}

7、zk的watch机制

7.1、Watch机制介绍

我们可以把 Watch 理解成是注册在特定 Znode 上的触发器。当这个 Znode 发生改变,也就是调用了 create,delete,setData 方法的时候,就会触发 Znode 上注册的对应事件,请求 Watch 的客户端将会收到异步通知。

具体交互过程如下:

  • 客户端调用 getData 方法,watch参数是true。服务端接到请求,返回节点数据,并且在对应的哈希表里插入被 Watch 的 Znode 路径,以及 Watcher 列表。

客户端一:

Untitled

客户端二:

Untitled

  • 当被 Watch 的 Znode 已删除,服务端会查找哈希表,找到该 Znode 对应的所有 Watcher,异步通知客户端,并且删除哈希表中对应的 key-value。

Untitled

客户端使⽤了 NIO 通信模式监听服务端的调⽤。

7.2、zkCli客户端使⽤watch

create /test xxx
get -w /test # ⼀次性监听节点
ls -w /test # 监听⽬录,创建和删除⼦节点会收到通知。⼦节点中新增节点不会收到通知 
ls -R -w /test # 监听⼦节点中⼦节点的变化,但内容的变化不会收到通知

客户端一:

Untitled

客户端二:

Untitled

7.3、curator客户端使⽤watch

		/**
     * 节点监听
     *
     * @throws Exception
     */
    @Test
    public void addNodeListener() throws Exception {
        NodeCache nodeCache = new NodeCache(curatorFramework, "/curator-node");
        nodeCache.getListenable().addListener(new NodeCacheListener() {
            @Override
            public void nodeChanged() throws Exception {
                log.info("{} path nodeChanged: ", "/curator-node");
                printNodeData();
            }
        });
        nodeCache.start();

        System.in.read();
    }

    public void printNodeData() throws Exception {
        byte[] bytes = curatorFramework.getData().forPath("/curator-node");
        log.info("data: {}", new String(bytes));
    }

8、Zookeeper集群实战

8.1、Zookeeper集群⻆⾊

zookeeper 集群中的节点有三种⻆⾊:

  • Leader:处理集群的所有事务请求,集群中只有⼀个Leader。
  • Follower:只能处理读请求,参与Leader选举。
  • Observer:只能处理读请求,提升集群读的性能,但不能参与Leader选举。

Untitled

8.2、集群搭建

搭建4个节点,其中⼀个节点为Observer

1、创建4个节点的myid,并设值

/usr/local/zookeeper 中创建以下四个⽂件:

Untitled

Untitled

2、编写4个zoo.cfg

Untitled

# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial 
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between 
# sending a request and getting an acknowledgement
syncLimit=5
# 修改成对应的zk1 zk2 zk3 zk4
dataDir=/usr/local/zookeeper/zkdata/zk1
# 修改成对应的端⼝ 2181 2182 2183 2184
clientPort=2181
# 2001为集群通信端⼝,3001为集群选举端⼝,observer表示不参与集群选举
server.1=0.0.0.0:2001:3001
server.2=0.0.0.0:2002:3002
server.3=0.0.0.0:2003:3003
server.4=0.0.0.0:2004:3004:observer

3、启动4台Zookeeper

Untitled

Untitled

8.3、连接Zookeeper集群

./zkCli.sh -server 0.0.0.0:2181,0.0.0.0:2182,0.0.0.0:2183,0.0.0.0:2184

9、ZAB协议

9.1、什么是ZAB协议

Zookeeper 作为⾮常重要的分布式协调组件,需要进⾏集群部署,集群中会以⼀主多从的形式进⾏部署。Zookeeper 为了保证数据的⼀致性,使⽤了ZAB(Zookeeper Atomic Broadcast)协议,这个协议解决了 Zookeeper 的崩溃恢复和主从数据同步的问题。

Untitled

9.2、ZAB协议定义的四种节点状态

  • Looking :选举状态。
  • Following :Follower 节点(从节点)所处的状态。
  • Leading :Leader 节点(主节点)所处状态。
  • Observing:观察者节点所处的状态。

9.3、集群上线时的Leader选举过程

Zookeeper 集群中的节点在上线时,将会进⼊到 Looking 状态,也就是选举 Leader 的状态,这个状态具体会发⽣什么?

Untitled

把选票投给对方,应该理解成交换各自的选票信息。然后比较谁的选票更大(先比较zXid,再比较myId)

注意:zXid表示事务Id,每执行一条语句,事务Id就会加1

9.4、崩溃恢复时的Leader选举

Leader建⽴完成后,Leader 周期性地不断向 Follower 发送⼼跳(ping命令,没有内容的socket)。当 Leader 崩溃后,Follower 发现 socket 通道已关闭,于

是 Follower 开始进⼊到 Looking 状态,重新回到上⼀节中的 Leader 选举过程,此时集群不能对外提供服务。

Untitled

9.5、主从服务器之间的数据同步

Untitled

9.6、Zookeeper中NIO与BIO的应⽤

NIO

  • ⽤于被客户端连接的 2181 端⼝,使⽤的是NIO模式与客户端建⽴连接。
  • 客户端开启 Watch 时,也会使⽤ NIO,等待 Zookeeper 服务器的回调。

Untitled

BIO

  • 集群在选举时,多个节点之间的投票通信端⼝,使⽤ BIO 进⾏通信。

10、CAP理论

2000 年 7 ⽉,加州⼤学伯克利分校的 Eric Brewer 教授在 ACM PODC 会议上提出 CAP 猜想。2年后,麻省理⼯学院的 Seth Gilbert 和 Nancy Lynch 从理论上

证明了 CAP。之后,CAP 理论正式成为分布式计算领域的公认定理。

10.1、CAP理论

CAP理论为:一个分布式系统最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance)这三项中的其中两项。

  • —致性(Consistency)

一致性指"all nodespsee the same data at the same time",即更新操作成功并返回客户端完成后,所有节点在同一时间的数据完全一致。

  • 可用性(Availability)

可用性指"Reads and writes always succeed",即服务一直可用,而且是正常响应时间。

  • 分区容错性(Partition tolerance)

分区容错性指 “the system continues to operate despite arbitrary message loss or failure of part of the system”,即分布式系统在遇到某个节点或网络分区故障的时候,仍然能够对外提供满足一致性或可用性的服务。——避免单点故障,就要进行冗余部署,冗余部署相当于是服务的分区,这样的分区就具备了容错性。

10.2、CAP 权衡

通过 CAP 理论,我们知道⽆法同时满⾜⼀致性、可⽤性和分区容错性这三个特性,那要舍弃哪个呢?

对于多数⼤型互联⽹应⽤的场景,主机众多、部署分散,⽽且现在的集群规模越来越⼤,所以节点故障、⽹络故障是常态,⽽且要保证服务可⽤性达到 N 个 9,即保证 P 和 A,舍弃C(退⽽求其次保证最终⼀致性)。虽然某些地⽅会影响客户体验,但没达到造成⽤户流程的严重程度。

对于涉及到钱财这样不能有⼀丝让步的场景,C 必须保证。⽹络发⽣故障宁可停⽌服务,这是保证 CA,舍弃 P。貌似这⼏年国内银⾏业发⽣了不下 10 起事故,但影响⾯不⼤,报到也不多,⼴⼤群众知道的少。还有⼀种是保证 CP,舍弃 A。例如⽹络故障是只读不写。

孰优孰略,没有定论,只能根据场景定夺,适合的才是最好的。

Untitled

10.3、BASE 理论

eBay 的架构师 Dan Pritchett 源于对⼤规模分布式系统的实践总结,在 ACM 上发表⽂章提出 BASE 理论,BASE 理论是对 CAP 理论的延伸,核⼼思想是即使⽆法做到强⼀致性(StrongConsistency,CAP 的⼀致性就是强⼀致性),但应⽤可以采⽤适合的⽅式达到最终⼀致性(Eventual Consitency)。

  • 基本可⽤(Basically Available)

基本可⽤是指分布式系统在出现故障的时候,允许损失部分可⽤性,即保证核⼼可⽤。

电商⼤促时,为了应对访问量激增,部分⽤户可能会被引导到降级⻚⾯,服务层也可能只提供降级服务。这就是损失部分可⽤性的体现。

  • 软状态(Soft State)

软状态是指允许系统存在中间状态,⽽该中间状态不会影响系统整体可⽤性。分布式存储中⼀般⼀份数据⾄少会有三个副本,允许不同节点间副本同步的延时就是软状态的体现。mysqlreplication 的异步复制也是⼀种体现。

  • 最终⼀致性(Eventual Consistency)

最终⼀致性是指系统中的所有数据副本经过⼀定时间后,最终能够达到⼀致的状态。弱⼀致性和强⼀致性相反,最终⼀致性是弱⼀致性的⼀种特殊情况。

4、Zookeeper追求的⼀致性

Zookeeper 在数据同步时,追求的并不是强⼀致性,⽽是顺序⼀致性(事务id的单调递增)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿小羽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值