在自然语言处理(NLP)任务中,关键词提取是一个非常重要的环节。它能够帮助我们快速理解文本的核心内容,并为后续的文本分类、信息检索、摘要生成等任务提供支持。本文将介绍三种常用的关键词提取方法:TF-IDF、TextRank 和 Word2Vec,并通过实际代码演示它们的实现过程。
一、关键词提取的背景与意义
关键词提取是从文本中自动识别出最能代表文本主题的词语或短语。它在以下场景中非常有用:
- 文本摘要:通过提取关键词,快速生成文本的摘要。
- 信息检索:帮助搜索引擎更好地理解文档内容,提高检索效率。
- 文本分类:作为特征输入,提升分类模型的性能。
本文将对比三种常用的关键词提取方法,并通过 Python 实现它们。
二、方法介绍与对比
准备:
使用conda环境,安装以下包:
conda create -n nat_lang python=3.9
conda activate nat_lang
conda install numpy scipy gensim
pip install jieba -i https://mirrors.aliyun.com/pypi/simple/
pip install pandas scikit-learn
数据预处理
# data_prepare.py
# 导入工具包
import os
import csv
# 文本文件合并
def text_combine(path):
# 1. 获取文件列表
files = []
for file in os.listdir(path):
if file.endswith(".txt"):
files.append(path + "/" + file)
# 2. 创建text.csv文件,保存结果
with open('data/text.csv', 'w', newline='',
encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(['id', 'title', 'abstract'])
# 3. 遍历txt文件,获取文件编号
for file_name in files:
number = (file_name.split('/')[1]).split('_')[0]
title, text = '', ''
count = 0
# 4. 读取标题和内容
with open(file_name, encoding='utf-8-sig') as f:
for line in f:
if count == 0:
title += line.strip()
else:
text += line.strip()
count += 1
res = [number, title, text]
writer.writerow(res)
# 主函数处理
def main():
path = 'text_file'
text_combine(path)
if __name__ == '__main__':
main()
1. TF-IDF(词频-逆文档频率)
原理:
TF-IDF 通过计算词语在文档中的词频(TF)和逆文档频率(IDF)来衡量词语的重要性。词频越高且逆文档频率越低的词语,越可能是关键词。
优点:
- 简单高效,适合处理大规模文本数据。
- 能够较好地反映文档的核心内容。
缺点:
- 无法捕捉词语之间的语义关系。
- 对短文本效果较差。
代码实现:
# tfidf.py
import codecs
import pandas as pd
import numpy as np
# 导入jieba分词
import jieba.posseg
import jieba.analyse
# 导入文本向量化函数
from sklearn.feature_extraction.text import TfidfTransformer
# 导入词频统计函数
from sklearn.feature_extraction.text import CountVectorizer
# 读取text.csv文件:分词,去停用词,词性筛选
def data_read(text, stopkey):
l = []
pos = ['n', 'nz', 'v', 'vd', 'vn', 'l', 'a', 'd'] # 定义选取的词性
seg = jieba.posseg.cut(text) # 分词
for i in seg:
if i.word not in stopkey and i.flag in pos: # 去停用词 + 词性筛选
l.append(i.word)
return l
# tf-idf获取文本top10关键词
def words_tfidf(data, stopkey, topK):
idList, titleList, abstractList = \
data['id'], data['title'], data['abstract']
corpus = [] # 将所有文档输出到一个list中,一行就是一个文档
for index in range(len(idList)):
# 拼接标题和摘要
text = '%s。%s' % (titleList[index], abstractList[index])
text = data_read(text, stopkey) # 文本预处理
text = " ".join(text) # 连接成字符串,空格分隔
corpus.append(text)
# 1、构建词频矩阵,将文本中的词语转换成词频矩阵
vectorizer = CountVectorizer()
# 词频矩阵,a[i][j]:表示j词在第i个文本中的词频
X = vectorizer.fit_transform(corpus)
# 2、统计每个词的tf-idf权值
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(X)
# 3、获取词袋模型中的关键词
word = vectorizer.get_feature_names_out()
# 4、获取tf-idf矩阵,a[i][j]表示j词在i篇文本中的tf-idf权重
weight = tfidf.toarray()
# 5、打印词语权重
ids, titles, keys = [], [], []
for i in range(len(weight)):
print(u"-------这里输出第", i + 1, u"篇文本的词语tf-idf------")
ids.append(idList[i])
titles.append(titleList[i])
df_word, df_weight = [], [] # 当前文章的所有词汇列表、词汇对应权重列表
for j in range(len(word)):
print(word[j], weight[i][j])
df_word.append(word[j])
df_weight.append(weight[i][j])
df_word = pd.DataFrame(df_word, columns=['word'])
df_weight = pd.DataFrame(df_weight, columns=['weight'])
word_weight = pd.concat([df_word, df_weight], axis=1) # 拼接词汇列表和权重列表
word_weight = word_weight.sort_values(by="weight", ascending=False) # 按照权重值降序排列
keyword = np.array(word_weight['word']) # 选择词汇列并转成数组格式
word_split = [keyword[x] for x in range(0, topK)] # 抽取前topK个词汇作为关键词
word_split = " ".join(word_split)
keys.append(word_split.encode("utf-8").decode("utf-8"))
result = pd.DataFrame({"id": ids, "title": titles, "key": keys},
columns=['id', 'title', 'key'])
return result
def main():
# 读取数据集
dataFile = 'data/text.csv'
data = pd.read_csv(dataFile)
# 停用词表
stopkey = [w.strip() for w in codecs.open('data/stopWord.txt', 'r', encoding="utf-8").readlines()]
# tf-idf关键词抽取
result = words_tfidf(data, stopkey, 10)
result.to_csv("result/tfidf.csv", index=False)
if __name__ == '__main__':
main()
2. TextRank
原理:
TextRank 是一种基于图排序的算法,通过构建词语共现图并计算图中节点的权重来提取关键词。
优点:
- 无需训练,适合处理短文本。
- 能够捕捉词语之间的共现关系。
缺点:
- 对长文本效果较差。
- 计算复杂度较高。
代码实现:
# textrank.py
import pandas as pd
import jieba.analyse
# 处理标题和摘要,提取关键词
def words_textrank(data, topK):
idList, titleList, abstractList = data['id'], data['title'], data['abstract']
ids, titles, keys = [], [], []
for index in range(len(idList)):
# 拼接标题和摘要
text = '%s。%s' % (titleList[index], abstractList[index])
jieba.analyse.set_stop_words("data/stopWord.txt") # 加载自定义停用词表
print("\"", titleList[index], "\"", " 10 Keywords - TextRank :")
# TextRank关键词提取,词性筛选
keywords = jieba.analyse.textrank(text, topK=topK,
allowPOS=('n', 'nz', 'v','vd', 'vn','l', 'a', 'd'))
word_split = " ".join(keywords)
keys.append(word_split.encode("utf-8").decode("utf-8"))
ids.append(idList[index])
titles.append(titleList[index])
result = pd.DataFrame({"id": ids, "title": titles,
"key": keys},
columns=['id', 'title', 'key'])
return result
def main():
dataFile = 'data/text.csv'
data = pd.read_csv(dataFile)
result = words_textrank(data, 10)
result.to_csv("result/textrank.csv", index=False)
if __name__ == '__main__':
main()
3. Word2Vec + K-means
原理:
Word2Vec 是一种词向量模型,能够将词语映射到高维空间,捕捉词语的语义信息。通过 K-means 聚类,可以从候选关键词中提取出最具代表性的词语。
优点:
- 能够捕捉词语的语义信息。
- 适合处理语义相关的任务。
缺点:
- 依赖预训练模型。
- 计算复杂度较高。
代码实现:
# word2vec_prepare.py
import warnings
warnings.filterwarnings(action='ignore',
category=UserWarning,
module='gensim') # 忽略警告
import codecs
import pandas as pd
import numpy as np
import jieba # 分词
import jieba.posseg
import gensim # 加载词向量模型
# 返回特征词向量bai
def word_vecs(wordList, model):
name = []
vecs = []
for word in wordList:
word = word.replace('\n', '')
try:
if word in model: # 模型中存在该词的向量表示
name.append(word.encode('utf8').decode("utf-8"))
vecs.append(model[word])
except KeyError:
continue
a = pd.DataFrame(name, columns=['word'])
b = pd.DataFrame(np.array(vecs, dtype='float'))
return pd.concat([a, b], axis=1)
# 数据预处理操作:分词,去停用词,词性筛选
def data_prepare(text, stopkey):
l = []
# 定义选取的词性
pos = ['n', 'nz', 'v', 'vd', 'vn', 'l', 'a', 'd']
# 确保输入是字符串类型
if not isinstance(text, str):
text = str(text)
seg = jieba.posseg.cut(text) # 分词
for i in seg:
# 去重 + 去停用词 + 词性筛选
if i.word not in l and i.word not in stopkey and i.flag in pos:
# print i.word
l.append(i.word)
return l
# 根据数据获取候选关键词词向量
def build_words_vecs(data, stopkey, model):
idList, titleList, abstractList = data['id'], data['title'], data['abstract']
for index in range(len(idList)):
id = idList[index]
title = titleList[index]
abstract = abstractList[index]
l_ti = data_prepare(title, stopkey) # 处理标题
l_ab = data_prepare(abstract, stopkey) # 处理摘要
# 获取候选关键词的词向量
words = np.append(l_ti, l_ab) # 拼接数组元素
words = list(set(words)) # 数组元素去重,得到候选关键词列表
wordvecs = word_vecs(words, model) # 获取候选关键词的词向量表示
# 词向量写入csv文件,每个词400维
data_vecs = pd.DataFrame(wordvecs)
data_vecs.to_csv('result/vecs/wordvecs_' + str(id) + '.csv', index=False)
print ("document ", id, " well done.")
def main():
# 读取数据集
dataFile = 'data/text.csv'
data = pd.read_csv(dataFile)
# # 检查是否有 NaN 值
# print("Number of NaN values in 'title':", data['title'].isnull().sum())
# print("Number of NaN values in 'abstract':", data['abstract'].isnull().sum())
#
# # 将 NaN 值替换为空字符串
# data['title'] = data['title'].fillna('')
# data['abstract'] = data['abstract'].fillna('')
# 停用词表
stopkey = [w.strip() for w in codecs.open('data/stopWord.txt', 'r', encoding='utf-8').readlines()]
# 词向量模型
inp = 'wiki.zh.text.vector'
model = gensim.models.KeyedVectors.load_word2vec_format(inp, binary=False)
build_words_vecs(data, stopkey, model)
if __name__ == '__main__':
main()
word2vec_result将word2vec_prepare文件构建的词向量进行提取
# word2vec_result.py
import os
# 导入kmeans聚类算法
from sklearn.cluster import KMeans
import pandas as pd
import numpy as np
import math
# 对词向量采用K-means聚类抽取TopK关键词
def words_kmeans(data, topK):
words = data["word"] # 词汇
vecs = data.iloc[:, 1:] # 向量表示
kmeans = KMeans(n_clusters=1, random_state=10).fit(vecs)
labels = kmeans.labels_ # 类别结果标签
labels = pd.DataFrame(labels, columns=['label'])
new_df = pd.concat([labels, vecs], axis=1)
vec_center = kmeans.cluster_centers_ # 聚类中心
# 计算距离(相似性) 采用欧几里得距离(欧式距离)
distances = []
vec_words = np.array(vecs) # 候选关键词向量,dataFrame转array
vec_center = vec_center[0] # 第一个类别聚类中心,本例只有一个类别
length = len(vec_center) # 向量维度
for index in range(len(vec_words)): # 候选关键词个数
cur_wordvec = vec_words[index] # 当前词语的词向量
dis = 0 # 向量距离
for index2 in range(length):
dis += (vec_center[index2] - cur_wordvec[index2]) * \
(vec_center[index2] - cur_wordvec[index2])
dis = math.sqrt(dis)
distances.append(dis)
distances = pd.DataFrame(distances, columns=['dis'])
# 拼接词语与其对应中心点的距离
result = pd.concat([words, labels, distances], axis=1)
# 按照距离大小进行升序排序
result = result.sort_values(by="dis", ascending=True)
# 抽取排名前topK个词语作为文本关键词
wordlist = np.array(result['word'])
# 检查 wordlist 的长度是否足够
actual_topK = min(topK, len(wordlist)) # 取 topK 和 wordlist 长度的较小值
word_split = [wordlist[x] for x in range(0, actual_topK)] # 提取前 actual_topK 个词汇
word_split = " ".join(word_split)
return word_split
def main():
# 读取数据集
dataFile = 'data/text.csv'
articleData = pd.read_csv(dataFile)
ids, titles, keys = [], [], []
rootdir = "result/vecs" # 词向量文件根目录
fileList = os.listdir(rootdir) # 列出文件夹下所有的目录与文件
# 遍历文件
for i in range(len(fileList)):
filename = fileList[i]
path = os.path.join(rootdir, filename)
if os.path.isfile(path):
# 读取词向量文件数据
data = pd.read_csv(path, encoding='utf-8')
# 聚类算法得到当前文件的关键词
artile_keys = words_kmeans(data, 5)
# 根据文件名获得文章id以及标题
(shortname, extension) = os.path.splitext(filename)
t = shortname.split("_")
article_id = int(t[len(t) - 1]) # 获得文章id
# 获得文章标题
artile_tit = articleData[articleData.id ==
article_id]['title']
print(artile_tit)
print(list(artile_tit))
artile_tit = list(artile_tit)[0] # series转成字符串
ids.append(article_id)
titles.append(artile_tit)
keys.append(artile_keys.encode("utf-8").decode("utf-8"))
# 所有结果写入文件
result = pd.DataFrame({"id": ids, "title": titles, "key": keys},
columns=['id', 'title', 'key'])
result = result.sort_values(by="id", ascending=True) # 排序
result.to_csv("result/word2vec.csv", index=False,
encoding='utf_8_sig')
if __name__ == '__main__':
main()
三、实验与结果分析
1. 数据准备
使用 data_prepare.py
脚本将多个 .txt
文件合并为一个 text.csv
文件。每个 .txt
文件包含文章的标题和摘要,合并后的 text.csv
文件包含三列:id
、title
和 abstract
。
2. 实验结果
- TF-IDF:提取的关键词基于词频和逆文档频率,能够较好地反映文章的核心内容。
- TextRank:提取的关键词基于图排序算法,能够捕捉词语之间的共现关系。
- Word2Vec:提取的关键词基于词向量和聚类算法,能够捕捉词语的语义信息。
3. 方法对比
方法 | 优点 | 缺点 | 适用场景 |
---|---|---|---|
TF-IDF | 简单高效,适合大规模文本 | 无法捕捉语义关系 | 大规模文本数据 |
TextRank | 无需训练,适合短文本 | 对长文本效果较差 | 短文本 |
Word2Vec | 能够捕捉语义信息 | 依赖预训练模型,计算复杂度高 | 语义相关任务 |
五、总结
本文介绍了三种常用的关键词提取方法:TF-IDF、TextRank 和 Word2Vec,并通过 Python 实现了它们。每种方法都有其优缺点,适用于不同的场景。在实际应用中,可以根据任务需求选择合适的方法,或结合多种方法提高效果。
资料
通过网盘分享的文件:3.3.2-关键词提取综合案例.zip
链接: https://pan.baidu.com/s/1Nbg1fCKYLAhxRVB9jgRM_Q 提取码: w89q
希望本文对你理解关键词提取有所帮助!如果你有任何问题或建议,欢迎在评论区留言。