L1 惩罚和 L2 惩罚的区别

L1 惩罚(Lasso回归)

L1 惩罚,也称为 Lasso(最小绝对值收缩和选择算子),是一种正则化方法,用于防止模型过拟合。它通过在损失函数中添加参数的绝对值之和来实现。具体来说,Lasso 回归的损失函数形式为:
L o s s L a s s o = ∑ i = 1 n ( y i − y i 2 ) + λ ∑ j = 1 p ∣ w j ∣ LossLasso=\sum_{i=1}^{n}(y_i−y_i^2)+λ\sum_{j=1}^p∣w_j| LossLasso=i=1n(yiyi2)+λj=1pwj
其中:

  • ∑ i = 1 n ( y i − y i 2 ) \sum_{i=1}^{n}(y_i−y_i^2) i=1n(yiyi2)是普通的均方误差损失。
  • λ 是正则化参数,控制惩罚的强度。
  • ∑ j = 1 p ∣ w j ∣ \sum_{j=1}^p∣w_j| j=1pwj是参数的绝对值之和,即 L1 范数。

L1 惩罚的特点是它可以使一些参数的值变为零,从而实现特征选择。这意味着在最终的模型中,只有部分特征会被保留,模型变得更加稀疏和易于解释。

L2 惩罚(Ridge回归)

L2 惩罚,也称为 Ridge 回归,是另一种正则化方法。它通过在损失函数中添加参数的平方和来实现。具体来说,Ridge 回归的损失函数形式为:
L o s s R i d g e = ∑ i = 1 n ( y i − y ^ i 2 ) + λ ∑ j = 1 p w j 2 LossRidge=\sum_{i=1}^n(y_i-\hat{y}_i^2)+λ\sum_{j=1}^pw_j^2 LossRidge=i=1n(yiy^i2)+λj=1pwj2
其中:

  • ∑ i = 1 n ( y i − y ^ i 2 ) \sum_{i=1}^n(y_i-\hat{y}_i^2) i=1n(yiy^i2)是普通的均方误差损失。
  • λ 是正则化参数,控制惩罚的强度。
  • λ ∑ j = 1 p w j 2 λ\sum_{j=1}^pw_j^2 λj=1pwj2是参数的平方和,即 L2 范数。

L2 惩罚的特点是它会使参数的值变得较小,但不会使它们变为零。这意味着所有特征都会被保留,但它们的影响会被减弱,从而防止过拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值