Neural Network-based Question Answering over Knowledge Graphs on Word and Character Level读书笔记

针对simple question

word embedding同时采用两种level的embedding

再分别对question,entity和predicate建模,都是利用词序列过GRU得到表征,计算余弦相似度

candidate entity生成方法:

    1.一个实体与问题中的n-gram完全match,加入候选集

    2.如果一个n-gram被包含在更大的n-gram中,且大的n-gram与某一个图谱中的entity匹配,则丢弃小的,除非大的n-gram以"the, a, an, of, on, at, by"开头

    3.如果exact match没有被找到,那么将图谱中entity的label与某一个n-gram的编辑距离小于2的也加入候选集

    4.如果有许多entity match了一个n-gram,那么按照entity在图谱三元组中以subject出现的次数排序,取前{5,10,400}个

candidate predicate生成方法:

有两种方法,方法一:

    top entity作为subject的三元组中的predicate作为候选集

方法二:

    考虑与top entity有相同label的实体,这些实体作为subject 的三元组中的predicate作为候选集

 

负例的生成对于训练结果影响很大

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值