数论基础

32 篇文章 0 订阅

1.模运算
在这里插入图片描述
*做减法时候为了避免出现负数,需要
(a-b)mod m=((a mod m)-(b mod m)+m) mod m
*除法取模需要逆元
2.快速幂
第一种:

long long fastpow1(long long a,long long n)
{
	if(n==1) return a;
	long long tmp =fastpow(a,n/2);
	if(n%2==1) return tmp*tmp*a;
	else return tmp*tmp;
}

第二种:

long long fastpow2(long long a,long long n)
{
	long long ans=1;
	while(n)
	{
		if(n&1) ans*=a;
		a*=a;
		n>>=1;
	}
	return ans;
}

3:GCD
辗转相除法: gcd(a,b)=gcd(b,a%b)
更相减损术:gcd(a,b)=gcd(b,a-b)
LCM:
lcm(a,b)=a*b/(gcd(a,b)
性质:
gcd(a,0)=a
gcd(a,b)=gcd(a,-b)

int gcd(int a,int b)
{
	return b==0?a:gcd(b,a%b);
}

同余与逆元:
在这里插入图片描述
同余式:
在这里插入图片描述
逆元:
在这里插入图片描述
求除法的模:
a/b mod m=ak (b的逆元) mod m
逆元的求法:
1.拓展欧几里得 2.费马小定理
费马小定理:
在这里插入图片描述
在这里插入图片描述
唯一分解定理:

int fact[N],power[N];

void prime(int n)
{
	for(int i=2;i<=n;i++)
	{
		fact[++con]=i;
		while(n%i==0)
		{
			n/=i;
			power[con]++;
		}
	}
}

素数筛:
1:埃式筛法

int getprime(int n)
{
	for(int i=1;i<=n;i++) isprime[i]=1;
	isprime[0]=isprime[1]=0;
	for(int i=2;i<=n;i++)
	{
		if(isprime[i])
		{
			prime[++con]=i;
			for(int j=i*i;j<=n;j+=i)
			{
				isprime[j]=0;
			}
		}
	}
}

2:欧拉筛

int getprime(int n)
{
	for(int i=2;i<=n;i++)
	{
		if(!isnotprime[i]) pri[++con]=i;
		for(int j=1;j<=con;j++)
		{
			if(i*pri[j]>n) break;
			isnotprime[i*pri[j]]=1;
			if(i%pri[j]==0) break;
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值