Binary Tree Vertical Order Traversal

本文介绍了一种二叉树的垂直遍历算法,通过使用队列和哈希映射来实现节点按列顺序的收集。该算法首先将根节点放入队列,并为其分配初始列编号,然后依次处理队列中的每个节点,将其值添加到对应列的列表中。同时,对于每个节点的左右子节点,更新其列编号并加入队列。最终,按照列编号的顺序整理输出结果。
摘要由CSDN通过智能技术生成
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public List<List<Integer>> verticalOrder(TreeNode root) {
        List<List<Integer>> res = new LinkedList<>();
        if (root == null) {
            return res;
        }
        Map<Integer, List<Integer>> map = new HashMap<>();
        Queue<Integer> queue = new LinkedList<>();
        Queue<TreeNode> nodeQueue = new LinkedList<>();
        nodeQueue.offer(root);
        queue.offer(0);
        int min = 0, max = 0;
        while (!queue.isEmpty()) {
            TreeNode node = nodeQueue.poll();
            int column = queue.poll();
            if (map.containsKey(column)) {
                List<Integer> list = map.get(column);
                list.add(node.val);
            } else {
                List<Integer> list = new LinkedList<>();
                list.add(node.val);
                map.put(column, list);
            }
            if (node.left != null) {
                nodeQueue.offer(node.left);
                queue.offer(column - 1);
                if (min > column - 1) {
                    min = column - 1;
                }
            }
            if (node.right != null) {
                nodeQueue.offer(node.right);
                queue.offer(column + 1);
                if (max < column + 1) {
                    max = column + 1;
                }
            } 
        }
        for (int i = min; i <= max; i++) {
            res.add(map.get(i));
        }
        return res;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值