深入解读Logistic回归结果(…

Logistic回归虽然名字叫”回归” ,但却是一种分类学习方法。使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素。 

一 从线性回归到Logistic回归

线性回归和Logistic回归都是广义线性模型的特例。

假设有一个因变量y和一组自变量x1, x2, x3, ... , xn,其中y为连续变量,我们可以拟合一个线性方程:

y =β1*x2*x3*x+...+βn*xn

并通过最小二乘法估计各个β系数的值。

如果y为二分类变量,只能取值0或1,那么线性回归方程就会遇到困难: 方程右侧是一个连续的值,取值为负无穷到正无穷,而左侧只能取值[0,1],无法对应。为了继续使用线性回归的思想,统计学家想到了一个变换方法,就是将方程右边的取值变换为[0,1]。最后选中了Logistic函数:

y = 1 / (1+e-x)

这是一个S型函数,值域为(0,1),能将任何数值映射到(0,1),且具有无限阶可导等优良数学性质。

我们将线性回归方程改写为:

y = 1 / (1+e-z),

其中,z =β1*x2*x3*x+...+βn*xn

此时方程两边的取值都在0和1之间。

进一步数学变换,可以写为:

Ln(y/(1-y)) =β1*x2*x3*x+...+βn*xn

Ln(y/(1-y))称为Logit变换。我们再将y视为y取值为1的概率p(y=1),因此,1-y就是y取值为0的概率p(y=0),所以上式改写为:

p(y=1) = ez/(1+ez),

p(y=0) = 1/(1+ez),

其中,z =β1*x2*x3*x+...+βn*xn.

接下来就可以使用”最大似然法”估计出各个系数β。

 

二 odds与OR复习

      odds: 称为几率、比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。用p表示事件发生的概率,则:odds = p/(1-p)。

      OR:比值比,为实验组的事件发生几率(odds1)/对照组的事件发生几率(odds2)。 

 

三 Logistic回归结果的解读

      我们用一个例子来说明,这个例子中包含200名学生数据,包括1个自变量和4个自变量:

      因变量:  hon,表示学生是否在荣誉班(honors class),1表示是,0表示否;

      自变量:

      female :性别,分类变量,1=女,0=男

      read: 阅读成绩,为连续变量

      write: 写作成绩,为连续变量

      math:数学成绩,为连续变量 

 

      1、不包含任何变量的Logistic回归

      首先拟合一个不包含任何变量的Logistic回归,

      模型为 ln(p/(1-p) =β0

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

截距

-1.12546

0.164

0.000

      这里的系数β就是模型中的β= -1.12546,

      我们用p表示学生在荣誉班的概率,所以有ln(p/(1-p) =β= -1.12546,

      解方程得:p = 0.245。

      odds = p/1-p = 0.3245

      这里的p是什么意思呢?p就是所有数据中hon=1的概率。

      我们来统计一下整个hon的数据:

hon

例数

百分比

0

151

75.5%

1

49

24.5%

      hon取值为1的概率p为49/(151+49) = 24.5% = 0.245,我们可以手动计算出ln(p/(1-p) = -1.12546,等于系数β0。可以得出关系:

      β0=ln(odds)。

 

      2、包含一个二分类因变量的模型

      拟合一个包含二分类因变量female的Logistic回归,

      模型为 ln(p/(1-p)  1* female.

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

female

0.593

.3414294

0.083

截距

-1.47

.2689555

0.000

      在解读这个结果之前,先看一下hon和female的交叉表:

hon

female

Total

Male

Female

0

74

77

151

1

17

32

49

Total

91

109

 

根据这个交叉表,对于男性(Male),其处在荣誉班级的概率为17/91,处在非荣誉班级的概率为74/91,所以其处在荣誉班级的几率odds1=(17/91)/(74/91) = 17/74 = 0.23;相应的,女性处于荣誉班级的几率odds2 = (32/109)/(77/109)=32/77 = 0.42。女性对男性的几率之比OR = odds2/odds1 = 0.42/0.23 = 1.809。我们可以说,女性比男性在荣誉班的几率高80.9%。

回到Logistic回归结果。截距的系数-1.47是男性odds的对数(因为男性用female=0表示,是对照组),ln(0.23) = -1.47。变量female的系数为0.593,是女性对男性的OR值的对数,ln(1.809) = 0.593。所以我们可以得出关系: OR = exp(β),或者β= ln(OR)(exp(x)函数为指数函数,代表e的x次方)。

 

      3、包含一个连续变量的模型

      拟合一个包含连续变量math的Logistic回归,

      模型为 ln(p/(1-p)  1* math.

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

math

.1563404

.0256095

0.000

截距

-9.793942

1.481745

0.000

      这里截距系数的含义是在荣誉班中math成绩为0的odds的对数。我们计算出odds = exp(-9.793942) = .00005579,是非常小的。因为在我们的数据中,没有math成绩为0的学生,所以这是一个外推出来的假想值。

      怎么解释math的系数呢?根据拟合的模型,有:

      ln(p/(1-p)) =  - 9.793942  + .1563404*math

      我们先假设math=54,有:

      ln(p/(1-p))(math=54) = - 9.793942 + .1563404 *54

      然后我们把math提高提高一个单位,令math=55,有:

      ln(p/(1-p))(math=55) = - 9.793942 + .1563404 *55

      两者之差:

      ln(p/(1-p))(math=55) - ln(p/1-p))(math = 54) = 0.1563404.

      正好是变量math的系数。

      由此我们可以说,math每提高1个单位,odds(即p/(1-p),也即处于荣誉班的几率)的对数增加0.1563404。

      那么odds增加多少呢?根据对数公式:

      ln(p/(1-p))(math=55) - ln(p/1-p))(math = 54) = ln((p/(1-p)(math=55)/ (p/(1-p)(math=54))) = ln(odds(math=55)/ odds(math=54)) = 0.1563404.

      所以:

      odds(math=55)/ odds(math=54)  =  exp(0.1563404) = 1.169.

      因此我们可以说,math每升高一个单位,odds增加16.9%。且与math的所处的绝对值无关。

      聪明的读者肯定发现,odds(math=55)/ odds(math=54)不就是OR嘛!

 

      4、包含多个变量的模型(无交互效应)

      拟合一个包含female、math、read的Logistic回归,

      模型为 ln(p/(1-p) = β1* math+β2* female+β3* read.

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

math

.1229589

0.000

female

0.979948

0.020

read

.0590632

0.026

截距

-11.77025

0.000

      该结果说明:

     (1) 性别:在math和read成绩都相同的条件下,女性(female=1)进入荣誉班的几率(odds)是男性(female=0)的exp(0.979948) = 2.66倍,或者说,女性的几率比男性高166%。

     (2) math成绩:在female和read都相同的条件下,math成绩每提高1,进入荣誉班的几率提高13%(因为exp(0.1229589) = 1.13)。

     (3)read的解读类似math。

 

      5、包含交互相应的模型

      拟合一个包含female、math和两者交互相应的Logistic回归,

      模型为 ln(p/(1-p)  1* female+β2* math+β3* female *math.

      所谓交互效应,是指一个变量对结果的影响因另一个变量取值的不同而不同。

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

female

-2.899863

0.349

math

.1293781

0.000

female*math

.0669951

0.210

截距

-8.745841

0.000

      注意:female*math项的P为0.21,可以认为没有交互相应。但这里我们为了讲解交互效应,暂时忽略P值,姑且认为他们是存在交互效应的。

      由于交互效应的存在,我们就不能说在保持math和female*math不变的情况下,female的影响如何如何,因为math和female*math是不可能保持不变的!

      对于这种简单的情况,我们可以分别拟合两个方程,

      对于男性(female=0):

      log(p/(1-p))= β0 + β2*math.

      对于女性(female=1):

      log(p/(1-p))= (β0 + β1) + (β2 + β3 )*math.

      然后分别解释。

 

 


      注:本文大量参考这篇文章:http://www.ats.ucla.edu/stat/mult_pkg/faq/general/odds_ratio.htm

 

 

### 回答1: 二元logistic回归是一种用于分析二分类问题的统计模型,它可以用来预测一个事件是否会发生。在Stata中,可以使用logistic命令来进行二元logistic回归分析。该命令可以通过指定因变量和自变量来拟合一个logistic回归模型,并输出模型的参数估计、标准误、p值等统计信息。通过这些统计信息,可以评估自变量对因变量的影响,并进行预测和分类。 ### 回答2: 二元logistic回归是一种常见的建模方法,用于探究两个二分变量之间的关系。该模型广泛应用于医学、社会科学、市场研究等领域,能够帮助我们识别影响因素,预测结果等。 在stata中,运用两个命令可以进行二元logistic回归建模:logit和probit。其中,logit命令使用logistic函数,probit命令使用反正切函数,两者模型形式基本相同,区别仅在于转换函数的不同。 二元logistic回归建模中,需要先确定因变量和自变量,通常以1和0二元变量表示。然后,需要进行变量选取和处理,保证数据质量和模型拟合度。接着,采用logit或probit命令进行模型拟合,得出拟合结果并进行诊断和检验,判断模型是否符合假设和数据情况,如果不符合,则需要进行调整和修正,直至达到理想结果。 二元logistic回归模型的输出通常包含模型系数、标准误、z值、p值和置信区间等信息,这些信息可以帮助我们理解变量之间的关系,并进行预测和继续分析。 总之,二元logistic回归是数据分析中十分重要的建模方法之一,能够帮助我们深入挖掘数据中的信息和关系,为决策和预测提供有力支持。在使用stata进行二元logistic回归建模时,需要注意数据的质量和模型的假设合理性,尽可能地获取准确、可靠的建模结果。 ### 回答3: 二元logistic回归是一种广泛应用于二元因变量(二项式数据)的统计模型,常用于探究两种不同的影响变量对于某一二项式事件是否发生的概率影响。我们也可以利用Stata进行二元logistic回归分析。 在Stata中使用二元logistic回归,首先需要提前准备好数据,并且了解自变量与因变量的概率关系。然后使用logistic命令进行分析。命令格式如下: logistic 因变量 自变量1 自变量2 ... 其中,因变量是必选项,而自变量则可以有多个,可选项。此外,还有一些可用的选项,可对回归分析进行进一步细化。比如,如果数据中存在缺失值,可以使用“if”语句排除缺失值。 在回归分析结果中,我们常常需要关注的是模型的拟合程度和自变量的影响力。Stata提供了几种方式展示模型拟合程度的统计量和自变量影响力的估计量,如: 1. 模型拟合程度的统计量:模型的拟合程度通常通过几个统计量来衡量,如log likelihood、R2、Pseudo R2等。在Stata中,我们可以通过“logit”命令的输出观察到这些统计量。 2. 自变量影响力的估计量:自变量的影响力可以用估计系数来衡量。在Stata中,“logistic”命令输出了每个自变量的估计系数及其标准误、置信区间和p值等信息。其中,估计系数的符号可以指示自变量的作用方向,而符号的大小则表示自变量对于因变量的影响程度。 总之,Stata是一个优秀的统计分析软件,能够支持高效且简单的二元logistic回归分析。针对不同的研究问题,我们可以利用Stata对分析结果进行解释和解读,从而得出科学、合理的结论和建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值