svm工具箱快速入手简易教程

svm工具箱快速入手简易教程

    首先svm是用来做分类的,是一种有监督的分类器.

    什么是有监督的呢?就是说在你给我一个数据集让我做分类之前.我已经有一些经验数据了.即要先进行学习,再进行分类.

    这里就有了训练集和测试集.先用训练集来训练分类器.然后把测试数据输入分类器让分类器来进行分类.

    具体的svm分类器的原理在此不作讨论.

    这里我有下载http://wenku.baidu.com/view/5be71ecc0508763231121257.html来理解svm是怎么操作的.其代码为

=

第一行是读入matlab数据集

第二行是仅分析2列,对根据这2列的数据进行分类

第三行是生成组号.原有的组名是setosa,versicolor,virginica.这里进行分类是分成2类,是setosa(组号为1)以及非setosa(组号为0)

第四行是生成交叉检验的数据.即决定哪一些行作为测试集,哪一些行作为训练集.其中train中为1的元素表示训练集,test中为1的元素表示测试集

第五行是生成了一个评估分类结果的对象

第六行使用训练集的数据生成svm分类器

第七行使用这个分类器对测试集的数据进行分类.结果放在classes中

第八行评估分类的性能,把评估器,分类结果和测试集的索引作为参数进行评估

第九行得出评估结果


  • |
  • 浏览:12067
  • |
  • 更新:2014-05-15 17:38
    百度经验:jingyan.baidu.com

    下面我就通过实例介绍一下matlab导入txt数据.。

    1. 我们经常会用到MTALB读取TXT中数据的情况,下面我们就用下面数据进行示例

    2. 输入ex=importdata('example.txt'),回车,出现以下结果

      意思是此TXT中有4*3维的数据矩阵,一共有5*4维的元素矩阵。

    3. 输入命令data=ex.data回车,会出现如下结果:

      这句命令,将TXT文本中的所有数据元素都存储在了data矩阵当中。

    4. 输入text=ex.textdata,回车,会出现如下结果:

      这句命令将文本中的所有文本格式数据都存储在了相应矩阵当中。

    5. 然后我们就可以用访问矩阵元素的格式访问这些数据了。例如data(1,1),size(data)等等。

      如果以上经验有用,请点击下方的有用按钮支持我的工作,谢谢合作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值