给你一个整数数组 nums ,你可以对它进行一些操作。
每次操作中,选择任意一个 nums[i] ,删除它并获得 nums[i] 的点数。之后,你必须删除 所有 等于 nums[i] - 1 和 nums[i] + 1 的元素。
开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。
示例 1:
输入:nums = [3,4,2]
输出:6
解释:
删除 4 获得 4 个点数,因此 3 也被删除。
之后,删除 2 获得 2 个点数。总共获得 6 个点数。
示例 2:
输入:nums = [2,2,3,3,3,4]
输出:9
解释:
删除 3 获得 3 个点数,接着要删除两个 2 和 4 。
之后,再次删除 3 获得 3 个点数,再次删除 3 获得 3 个点数。
总共获得 9 个点数。
不了解打家劫舍类动态规划可以去主页查找原型题目
代码
class Solution {
public:
int deleteAndEarn(vector<int>& nums) {
int maxnum = 0;
for(int num : nums){
maxnum = max(maxnum, num);
}
vector<int> sum(maxnum + 1);
for(int num : nums){
sum[num] += num;
}
vector<int> dp(maxnum + 1, 0);
dp[0] = sum[0];
dp[1] = max(sum[0], sum[1]);
for(int i=2;i < maxnum + 1; i++){
dp[i] = max(dp[i-2] + sum[i] ,dp[i-1]);
}
return dp[maxnum];
}
};
这道题目本质还是“打家劫舍”的变形,像这种隔着选的都是属于这类问题。使用一个vector容器sum来储存每个相同数字的点数和。举个例子,nums = [2,2,3,3,3,4]转变过来就是sum = [0,0,4,9,4]。这时候,sum[i]就可以抽象成打家劫舍中的每间屋子的钱,然后列出状态转移方程dp[i] = max(dp[i-2] + sum[i] ,dp[i-1])
计算前 i 家房子最多可以偷到的钱。最后返回dp的最后一个值即可。