自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI云原生与云计算技术学院

AI云原生与云计算,深度钻研AI云原生和云计算领域前沿技术。熟悉AI云原生架构与云计算服务,分享容器化、微服务等实战经验。紧跟行业动态,解读最新趋势,助力开发者与企业高效上云,在云端构建灵活、弹性、高可用的应用体系。

  • 博客(1100)
  • 收藏
  • 关注

原创 提示工程架构师实战:上下文工程在农业智能环境监测中的应用

环境感知的内在挑战时空动态性:农业环境参数(光照、温度、湿度等)具有显著的昼夜节律、季节周期和随机波动,时间尺度从秒级(风速)到年际(气候变化)不等空间异质性:即使在同一地块内,土壤特性、作物生长状况也存在显著差异,空间分辨率需求从厘米级(叶片级监测)到公里级(区域监测)多模态数据异构性:监测数据来自传感器(结构化)、图像(半结构化)、气象模型(结构化)、专家经验(非结构化)等多种来源,数据格式、精度、更新频率差异极大环境干扰。

2025-08-15 03:46:00 578

原创 AI应用架构师指南:高效AI系统架构设计的核心技巧

随着人工智能技术的飞速发展,AI应用已从早期的实验性项目逐步渗透到各行各业的核心业务流程中,从智能推荐、语音助手、自动驾驶到医疗诊断、金融风控。一个“高效”的AI系统不仅仅指其模型具有高精度,更意味着它能够以合理的成本、稳定的性能、良好的用户体验以及合规的方式,持续地为业务目标服务。然而,AI系统的构建远比传统软件系统复杂。它融合了数据工程、机器学习、软件工程、DevOps甚至领域知识,面临着数据质量、模型漂移、算力消耗、可解释性、伦理安全等多方面的挑战。AI应用架构师。

2025-08-15 00:37:05 274

原创 前沿!提示工程架构师探索Agentic AI用户隐私保护新领域

Agentic AI(智能体AI)是一类具备自主目标导向行动能力的AI系统。它的核心是“Agent循环”:感知环境→规划任务→执行行动→接收反馈→调整策略,直至目标达成。维度传统AIAgentic AI目标来源用户明确指令(如“写一篇总结”)可自主生成子目标(如“为了写总结,先收集资料”)行动范围单一模型输出(文本/图像)调用外部工具(API、数据库、物理设备)交互模式单次/有限轮对话长期持续交互(如连续跟踪用户项目进度)

2025-08-14 23:15:04 315

原创 司法AI系统的法律风险评估:架构师如何帮助企业规避法律风险?

本文将以**“法律风险评估"为核心**,从司法AI系统的典型架构出发,拆解数据、算法、应用三大层面的12类核心法律风险,构建"风险识别-评估建模-技术规避"的全流程方法论。重点聚焦架构师的实战角色:如何将法律合规要求转化为可落地的技术设计(如数据脱敏算法、可解释性模块、审计追踪系统),并通过案例与代码示例,演示如何在系统开发全生命周期中嵌入"法律安全网”。本文从司法AI系统的三层架构数据层:数据源合法性校验、数据最小化处理、高级脱敏技术;算法层:算法歧视检测与缓解、模型可解释性增强;应用层。

2025-08-14 21:43:08 546

原创 AI虚拟社区架构安全:应对新型网络攻击的防御策略

想象一下,在不远的将来,你踏入一个名为“幻界绿洲”的AI虚拟社区。在这里,你拥有高度拟真的数字分身,与世界各地的用户进行无缝社交、协同工作、沉浸式学习,甚至体验超越物理法则的娱乐活动。AI助手为你打理日常,智能NPC与你互动,环境会根据你的喜好实时调整。这不仅仅是游戏,更像是一个平行的数字生活空间。然而,当你沉浸其中,是否曾想过,这个看似完美的数字伊甸园,可能正遭受着你无法想象的“数字瘟疫”?一次精心设计的AI模型投毒,可能让你在虚拟世界中名誉扫地;

2025-08-14 20:16:02 515

原创 提示工程架构师警惕!Agentic AI伦理设计中的“功能过载”

当我们赋予AI智能体越来越多的自主决策能力和功能模块时,我们是否正在打开一个无法控制的潘多拉魔盒?本文深入剖析了Agentic AI(智能体AI)发展中日益严峻的"功能过载"现象——这是一种因过度堆砌功能而导致系统行为不可预测、伦理边界模糊的新型技术危机。通过五维分析模型,我们揭示了功能过载如何从能力边界渗透、目标函数冲突和涌现行为失控三个维度威胁AI系统安全。

2025-08-14 18:38:41 384

原创 HDFS 在大数据领域的并发访问处理策略

在大数据技术栈中,Hadoop分布式文件系统(HDFS)作为数据存储的基石,其并发访问处理能力直接决定了整个大数据平台的吞吐量与可靠性。本文从分布式系统理论基础出发,系统剖析HDFS并发访问的核心挑战与解决方案。通过深入分析HDFS的架构设计、一致性模型和锁机制,本文详细阐述了读/写并发、元数据操作并发、以及跨节点协调等关键场景的处理策略。文章提供了丰富的代码示例、配置优化指南和性能调优技巧,帮助技术团队构建高效、可靠的HDFS并发访问机制。

2025-08-14 17:12:00 424

原创 电商AI定价可解释性:架构师的4套方案,让商家看懂定价逻辑

当业务场景复杂,内在可解释模型的预测精度无法满足需求,不得不采用复杂模型(如随机森林、梯度提升树GBDT/XGBoost/LightGBM,甚至神经网络)以追求更高性能时,我们需要“模型无关的事后解释方法”(Model-Agnostic Post-hoc Explanations)。这些方案从不同层面(模型选择、解释方法、系统设计、交互方式)入手,旨在构建一个“可解释的AI定价系统”,让商家能够清晰地“看懂”AI的定价逻辑。方案三试图通过架构设计上的创新,在复杂模型的高精度和可解释性之间取得更好的平衡。

2025-08-14 15:34:17 349

原创 6G时代,提示工程架构师如何设计节能的提示系统?

提示系统能效(Prompt System Efficiency, PSE):单位能源消耗下完成的提示任务数量与质量的综合度量,通常以"任务质量单位/焦耳"(Q/J)表示。6G绿色指标(Green 6G Metrics):6G系统特有的能效评估体系,包括每比特能耗、任务能效、网络能效和生命周期能效四个维度。边缘提示处理(Edge Prompt Processing):在网络边缘节点(而非云端)执行提示理解、优化和部分推理的技术,可显著减少数据传输能耗。

2025-08-14 13:56:58 595

原创 提示工程架构师必知的用户交互优化7大原则

开门见山:在人工智能与人类交互日益频繁的今天,提示词(Prompt)已成为连接用户意图与AI能力的核心桥梁。随着大语言模型(LLMs)等生成式AI技术的飞速发展,“提示工程”(Prompt Engineering)已从一项辅助技能演变为一门独立的工程学科。而“提示工程架构师”这一新兴角色,正肩负着设计高效、鲁棒、用户友好的提示系统的重任,其目标不仅是让AI“听懂”,更是让用户“用好”。在这一背景下,用户交互优化不再是产品经理的专属领域,而是提示工程架构师必须深刻理解和熟练运用的核心能力。一个精心设计的提示

2025-08-14 12:24:27 454

原创 提示工程架构师深度分析深度学习在提示工程的应用实践的物联网集成

结构化提示(Structured Prompt):包含固定格式和可变插槽的提示模板,用于处理具有明确结构的物联网数据。设备ID: {device_id}时间戳: {timestamp}传感器类型: {sensor_type}测量值: {value}历史趋势: {trend_analysis}当前状态评估: [请基于上述数据评估设备状态,返回"正常"、"注意"或"异常"]动态提示生成(Dynamic Prompt Generation)

2025-08-14 10:46:58 475

原创 《提示工程架构师的独到见解集:智能提示用户界面设计的关键因素、考量与策略》

在传统软件时代,用户界面(UI)的核心是“功能入口”——按钮、表单、菜单,本质是“用户适应系统规则”。而在AI驱动的智能时代,UI的核心正在转向“提示入口”——用户通过自然语言、指令、示例等方式“教AI做事”,本质是“系统适应用户意图”。用户认知鸿沟:普通用户缺乏“提示工程”专业知识,不知道如何精准表达需求(如“写一篇报告”vs“写一篇针对C端用户的产品复盘报告,包含数据对比、问题分析和3个改进建议,风格简洁”);AI能力边界。

2025-08-14 09:14:46 298

原创 解密大数据领域Kappa架构的消息队列应用

在大数据技术迅猛发展的浪潮中,数据处理架构也在不断演进。更快的响应速度、更全面的数据覆盖、更低的运维成本、更灵活的迭代能力。Lambda架构通过分离批处理层(负责处理全量历史数据,提供准确的“真理源”)和速度层(负责处理增量实时数据,提供低延迟的近似结果),并通过服务层合并两者结果,一度成为处理混合数据场景的主流方案。双倍开发与维护成本:需要为同一业务逻辑维护批处理(如Spark批处理)和流处理(如Flink/Spark Streaming)两套代码。数据一致性挑战。

2025-08-14 02:45:56 432

原创 物联网数据在大数据架构中的传输机制研究

在万物互联的时代,物联网设备正以前所未有的速度生成海量数据,这些数据如同数字世界的"原油",蕴含着巨大价值。然而,从数十亿分散的物联网设备到集中式大数据平台的数据传输过程,面临着异构性、实时性、可靠性和安全性等多重挑战。本文深入剖析了物联网数据的独特特性,系统阐述了其在大数据架构中的完整传输机制。我们将从数据产生、边缘处理、协议选择、传输优化到安全保障,一步步揭开物联网数据如何跨越物理与数字世界的鸿沟,最终成为驱动智能决策的关键燃料。

2025-08-14 01:08:48 480

原创 团队成长:提示工程架构师如何通过定期审查培养团队能力?

(图示:提示工程团队能力培养的金字塔模型,定期审查位于塔基,支撑起技术能力、协作效能与创新潜力的提升)

2025-08-13 23:31:34 279

原创 8大模块详解:提示工程架构师拆解多场景提示系统的完整技术栈

那时的提示词,如同神秘的魔法咒语,效果却充满随机性——相同的咒语,在不同的时间、不同的模型版本上,可能产生截然不同的结果。然而,当企业真正将大语言模型(LLM)引入核心业务流程(如智能客服、代码助手、游戏NPC、营销文案生成),这种“咒语式”的玩法就捉襟见肘了。多变的模型表现、复杂的用户意图、严格的性能要求、潜在的安全风险……的方式来定义提示模板,支持变量替换、条件逻辑、循环(轻度),实现提示模板的复用、版本控制和集中管理,告别字符串硬编码的混乱。构建纵深防御体系,抵御针对提示系统本身的攻击(主要是。

2025-08-13 21:59:52 415

原创 企业虚拟服务平台智能化:AI应用架构师必须掌握的7大技术点

异构系统集成复杂性:企业环境中通常存在多代技术并存的情况,从遗留系统到云原生应用,从封闭API到开源组件,如何在这种异构环境中实现AI能力的无缝集成是首要挑战。实时决策与资源约束:企业服务平台要求低延迟响应(通常毫秒级),而许多高级AI模型推理过程计算密集,如何在有限资源下实现实时智能决策是关键技术难题。数据质量与治理困境:企业数据往往存在质量参差不齐、标注缺失、隐私敏感等问题,直接影响AI模型效果;同时,数据治理和合规要求(如GDPR、CCPA)限制了数据的使用范围和方式。模型泛化与领域适配。

2025-08-13 20:28:31 686

原创 AI驱动业务创新的团队协作模型:AI应用架构师的管理技巧

为什么传统协作模式在AI项目中失效?AI项目对团队协作的特殊要求是什么?如何构建适配AI项目的团队协作模型?(包含角色定位、流程设计、沟通机制三大核心要素)AI应用架构师需要掌握哪些管理技巧?(如需求对齐、资源协调、冲突解决、迭代管理等)我们会结合真实案例(如金融AI风控项目、电商智能推荐系统),用“问题-方案-实操步骤”的方式,让你不仅理解“是什么”,更能学会“怎么做”。北极星指标(North Star Metric)是团队的“共同目标”,必须是可量化、与业务增长直接相关的指标。

2025-08-13 19:05:14 639

原创 技术剖析:AI营销系统中的模型监控告警架构

AI营销系统数据输入层:用户行为数据、市场数据、产品数据、竞争数据等特征工程层:特征提取、转换、选择和存储模型层:预测模型(点击率预测、转化率预测等)、优化模型(推荐、定价等)决策层:将模型输出转化为营销行动(广告投放、内容推荐等)反馈层:跟踪营销效果,形成闭环学习。

2025-08-13 15:45:47 311

原创 大数据诊断性分析:助力企业开启智慧决策之门

然而,现实情况是,许多企业虽然堆砌了大量的数据,部署了先进的数据仓库和BI(商业智能)工具,能够清晰地看到“发生了什么”(What happened),甚至能够预测“可能会发生什么”(What will happen),但对于更深层次的“为什么会发生”(Why did it happen)却常常感到困惑和无力。通过本文的学习,您将能够掌握诊断性分析的精髓,理解如何利用它来拨开数据迷雾,找到业务问题的“症结”,从而真正释放数据的价值,开启企业智慧决策的新篇章。简单来说,没有诊断性分析,企业就像在黑暗中摸索。

2025-08-13 14:13:41 734

原创 批处理环境下大数据的ETL过程

在当今数据驱动的时代,企业每天产生和收集的数据量呈爆炸式增长。据IDC预测,到2025年全球数据圈将增长至175ZB。如何高效、可靠地处理这些海量数据,将其转化为有价值的业务洞察,已成为企业数字化转型的核心挑战。批处理ETL(Extract-Transform-Load)作为大数据处理的基石,承担着从分散数据源抽取数据、进行清洗转换、最终加载到数据仓库的关键任务。本文将系统性地介绍批处理环境下大数据ETL的完整生命周期,从理论基础到工程实践,再到性能优化。

2025-08-13 10:58:18 266

原创 别再用传统方法!AI应用架构师教你湖仓一体的数据仓库设计

我会从传统数据仓库的痛点谈起,详细剖析湖仓一体架构的核心理念、关键组件、设计步骤、最佳实践,并辅以真实的案例分析,最终让你能够系统性地掌握湖仓一体数据仓库的设计精髓,并将其应用到你的AI项目中。湖仓一体 (Lakehouse) 是一种新型的数据架构,它将数据湖的低成本存储、灵活性与数据仓库的结构化查询、ACID事务、数据治理能力相结合,构建在低成本的对象存储之上,支持多种数据类型和多样化的分析工作负载,特别是为AI/ML应用提供高效的数据支撑。我们可以将湖仓一体架构视为一个多层蛋糕,每层都有其特定的职责。

2025-08-13 09:36:22 396

原创 大数据领域存算分离:架构设计的要点与技巧

在数据量呈指数级增长的今天,传统大数据架构面临着资源利用率低、扩展受限、成本高昂等诸多挑战。存算分离作为一种革命性的架构理念,通过将数据存储与计算资源解耦,为构建弹性、高效、经济的数据平台提供了全新思路。本文深入探讨了大数据领域存算分离架构的核心概念、技术原理和实现方法,从理论到实践全面解析了架构设计的关键要点与实用技巧。通过丰富的案例分析和最佳实践指南,本文旨在帮助大数据架构师、数据工程师和技术决策者掌握存算分离架构的设计精髓,构建能够应对未来数据挑战的下一代数据平台。

2025-08-13 03:12:48 588

原创 实验数据处理的AI革命:架构师的完整技术体系

本文将以架构师视角,系统拆解AI驱动的实验数据处理技术体系:从“为什么AI是实验数据处理的必然选择”,到“技术体系的六层架构设计”,再到“核心技术落地的关键步骤与实践案例”。我们会覆盖数据接入标准化、智能数据治理、自动化特征工程、AI模型引擎、应用服务集成、知识图谱构建等全链路技术,并结合材料科学、生物制药、高能物理等领域的真实案例,说明架构设计中的权衡与落地要点。数据接入层:打破多源数据孤岛,实现标准化采集;数据治理层:AI驱动异常检测、缺失值填充,提升数据质量;特征工程层。

2025-08-13 01:50:52 268

原创 探索方法!提示工程架构师的用户体验优化

本文将从“用户体验优化”的视角,系统梳理提示工程架构师的核心工作方法。我们将跳出单纯的“技术指标优化”,聚焦**“人-提示-模型”三者的交互链路**,通过7个实战步骤,详解如何从用户需求出发,设计出“用户愿意用、用得爽、能解决问题”的提示工程方案。做什么:将用户的“模糊需求”转化为“提示工程可落地的明确目标”,确保提示设计与用户真实意图对齐。为什么这么做:用户不会直接说“我需要一个‘包含必填参数校验的提示模板’”,而是说“AI总是不懂我要什么,能不能让它问我问题?

2025-08-13 00:13:49 666

原创 提示系统响应优化:架构师必须掌握的连接池技术

在现代应用架构中,数据库是存储数据的"大仓库",而应用程序与数据库之间的"桥梁"就是数据库连接。想象你去图书馆借书:如果每次借书都要先办理一张新借书卡(创建连接),借完后立刻销毁卡片(关闭连接),这样的流程不仅繁琐,还会浪费大量时间。连接池技术就像图书馆的"会员卡系统"——提前为读者办理好一批会员卡(预创建连接),读者来了直接用卡借书(复用连接),用完后不销毁卡片而是放回前台(释放连接到池),下次其他读者可以继续使用。理解连接池的核心原理与价值掌握连接池的设计与实现机制学会连接池参数调优的方法论。

2025-08-12 22:51:56 241

原创 大数据压缩算法:CAP视角下的存储优化

在数据量呈指数级增长的时代,有效的存储优化已成为分布式系统设计的核心挑战。本文深入探讨大数据压缩算法与CAP定理的交叉领域,揭示在分布式存储环境中如何在一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)之间进行战略性权衡,以实现最优存储效率。通过从信息论基础到实际系统部署的全面分析,本文构建了一套完整的理论框架和实践指南,帮助技术决策者在不同业务场景下选择和实施适当的压缩策略。

2025-08-12 21:19:46 577

原创 提示工程架构师如何改进提示版本管理与变更控制的效率和效果

在大型语言模型(LLM)应用开发的浪潮中,提示工程已从一种"试错艺术"演变为一门严谨的工程学科。本文深入探讨了提示工程架构师如何建立系统化的提示版本管理与变更控制体系,以解决企业级LLM应用面临的提示碎片化、质量不一致和协作混乱等核心挑战。通过借鉴传统软件工程的最佳实践并结合LLM应用的独特需求,我们提出了"提示工程成熟度模型"和"提示资产全生命周期管理框架",详细阐述了从提示创建到退役的完整管理流程。

2025-08-12 19:42:36 773

原创 AI应用架构师分享:企业数据治理体系中的AI团队协作策略

在当今数据驱动的商业环境中,企业越来越依赖AI技术实现业务创新与增长。然而,据Gartner研究显示,高达85%的AI项目未能实现预期业务价值,其中70%的失败可归因于数据治理不当和团队协作不畅。作为一名拥有10年经验的AI应用架构师,我见证了无数企业在AI转型过程中因数据孤岛、治理混乱和团队协作低效而陷入困境。本博客将从架构师视角,系统分享如何在企业数据治理体系中构建高效的AI团队协作策略,解决数据孤岛、合规风险和协作效率低下等核心挑战。

2025-08-12 18:10:28 558

原创 提示工程架构师2024规划:AI提示设计现状的5个重点,未来要布局的4个方向

提示工程已从AI领域的边缘实践演进为核心竞争力,催生了"提示工程架构师"这一关键角色。本文系统分析了2024年提示工程领域的技术现状与发展动态,深入探讨了当前AI提示设计的5个核心重点:结构化提示方法论成熟化、多模态提示融合技术、提示优化与自动化工具链、领域特定提示工程框架以及提示工程与人类反馈循环的整合。基于现状分析,本文前瞻性地提出了未来12-24个月内必须布局的4个战略方向:提示工程智能化与自治系统、跨模态提示设计架构、提示安全与鲁棒性框架,以及提示工程标准化与生态系统建设。

2025-08-12 16:38:19 578

原创 实战!基于微服务的提示工程数据脱敏方案

[数据安全与微服务架构融合示意图]

2025-08-12 15:05:49 682

原创 创新引领!提示工程架构师引领Agentic AI环境监测创新

提示工程是一门通过精心设计输入文本(提示)来引导人工智能模型(特别是大型语言模型, LLM)产生预期输出的艺术与科学。它并非简单的指令编写,而是一种与AI系统进行高效"对话"的方法论。将模糊的业务需求转化为精确的AI任务描述定义环境监测指标与评估标准确定Agent的自主性边界与人工干预机制。

2025-08-12 13:23:46 558

原创 大数据存储新范式:列式存储技术原理与源码解析

随着Hadoop生态系统的发展,涌现出多种优秀的开源列式存储格式,它们不依赖于特定的数据库,而是作为通用的文件格式被广泛应用于各种大数据处理框架中(如Hive, Spark, Impala, Presto等)。同一行中的不同列数据类型各异(如字符串、整数、日期),数据的相似度较低,这使得传统的基于行的压缩算法难以取得理想的压缩效果。行式存储中,连续的内存空间中包含了不同列的数据,当进行列操作时,CPU缓存中会加载很多无关数据,导致缓存命中率降低,影响处理速度。行式存储是最直观、最传统的数据存储方式。

2025-08-12 11:46:07 954

原创 AI应用架构师手把手:数学科研智能体的需求分析与功能模块设计实战

数学科研智能体(Mathematical Research Agent, MRA)是一种集成了人工智能技术的专业系统,旨在协助数学家完成从文献调研、问题提出、定理探索到证明验证的全流程科研工作。它不仅是工具,更是数学家的"数字研究伙伴"。想象一下这样的未来场景:李明戴上智能眼镜,激活了他的数学科研智能体。"我需要分析最近三年代数几何中关于镜像对称的关键进展,并找出与我的非交换环研究可能的连接点。

2025-08-12 10:14:17 787

原创 AI应用架构师必看:伦理审查自动化工具,帮你解决90%的合规痛点

随着生成式AI、大语言模型(LLM)等技术的爆发式发展,AI应用正以前所未有的速度渗透到金融、医疗、教育、司法等高敏感领域。然而,AI系统的“黑箱”特性、数据偏见的隐蔽性、算法决策的复杂性,使其在带来巨大价值的同时,也潜藏着歧视、隐私泄露、安全失控、责任不清等严重风险。传统的AI伦理审查往往依赖于人工评估、专家评审,这种方式不仅耗时耗力、成本高昂,更面临着标准不统一、主观性强、难以覆盖AI全生命周期、追溯困难等痛点。

2025-08-12 03:44:14 915

原创 AI应用架构师深度解析:智能家居AI智能体实现智能化居家生活的流程

本文将从AI应用架构师的视角,深入解析智能家居AI智能体如何实现智能化居家生活的完整流程。我们将系统探讨从用户需求感知到智能决策执行的端到端架构设计,剖析AI智能体的核心技术组件与工作原理,并通过实际案例展示如何构建一个能够理解、预测并满足用户需求的智能家居系统。无论您是技术开发者、产品经理还是智能家居爱好者,本文都将为您提供从概念到落地的全面指导,帮助您掌握构建下一代智能生活空间的关键技术与架构思想。智能家居的概念并非新鲜事物,其发展历程可追溯至20世纪80年代。

2025-08-12 02:16:06 247

原创 从提示工程师职业认证体系窥探提示工程架构师职业前景

虽然目前全球范围内可能还没有一个完全统一、被所有行业公认的权威认证体系(就像早期的软件工程师认证一样),但我们可以基于现有行业实践、学术研究以及对AI技术发展趋势的判断,勾勒出一个理想中的认证体系框架。例如,多模态LLM的普及会对提示工程提出新的要求,AI Agent的发展也会催生新的提示范式。回顾我们之前设想的提示工程师认证体系,特别是高级提示工程师的要求,我们可以发现其中很多高级技能是提示工程架构师能力的基础。提示工程架构师,顾名思义,是提示工程领域的“架构师”。在这样的背景下,一个科学、规范的。

2025-08-12 00:39:56 346

原创 数据服务编排:提升大数据处理效率的关键

编排”一词源于音乐领域,指的是将不同乐器的旋律和节奏组织起来,形成一首和谐的乐曲。在计算机科学和软件工程领域,“编排”被引申为对多个独立的、自治的组件或服务进行协调、管理和控制,以共同完成一个复杂的业务流程或任务。编排(Orchestration):通常有一个中央控制器(Orchestrator),它负责整个流程的定义、执行、监控和错误处理。各个参与组件(服务)被动地接收来自中央控制器的指令并执行特定操作,它们之间通常不直接通信,而是通过中央控制器进行交互。这种模式强调集中式的控制和全局视角。

2025-08-11 23:07:52 908

原创 提示工程架构师必看:AI提示系统情感智能的3个常见问题及解决

情感智能提示系统可定义为:一种能够识别、理解、处理和适当地响应人类情感状态的提示工程架构,它通过动态调整提示策略和系统响应,优化人机交互体验和任务结果。特征维度传统提示系统情感智能提示系统输入处理主要关注语义和指令理解同时处理语义内容和情感线索上下文建模主要关注任务上下文整合任务上下文和情感状态上下文输出生成优化任务性能和信息准确性同时优化任务性能、情感适当性和用户体验反馈机制主要基于任务结果同时基于任务结果和情感反馈适应能力主要针对任务需求调整。

2025-08-11 21:45:55 730

原创 提示工程架构师的知识宝库:提示工程在心理咨询的理论支撑

[提示工程与心理咨询的交汇:构建更有效的对话桥梁]

2025-08-11 20:08:46 683

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除