相同月利率条件下不同还款方式贷款的APR与IRR研究

前提假设

  1. 因为常见的信贷产品还款期数定义都是按照月,假设只借一期的利率(月利率)为r,在此条件下,研究不同还款方式下的APR和IRR计算结果与r、期数n、本金C这几个变量的关系;
  2. 约束条件:1)月利率为r;2)在第n期期末结束时,还清所有本息;
  3. IRR:根据净现值等于0时的折现率计算出实际月利率, I R R = 12 r a c t IRR=12r_{act} IRR=12ract
  4. APR:年化利率,以一年(12个月)为计息长度时,利息总和占本金的百分比;

一次性还本付息

  1. 计算现金流:
    P i = { − C , i = 0 0 , 0 < i < n C + C r n , i = n P_i= \begin{cases} -C, i=0 \\ 0, 0<i<n \\ C+Crn, i=n \end{cases} Pi= C,i=00,0<i<nC+Crn,i=n
  2. 计算IRR: ∑ i = 0 n P i ( 1 + r a c t ) i = 0 \sum_{i=0}^{n}\frac{P_i}{(1+r_{act})^i}=0 i=0n(1+ract)iPi=0,求得 I R R = ( ( 1 + r n ) 1 / n − 1 ) ∗ 12 IRR=((1+rn)^{1/n}-1)*12 IRR=((1+rn)1/n1)12
  3. 计算APR:利息总和*12/C/n,求得 A P R = 12 r APR=12r APR=12r;

先息后本

  1. P i = { − C , i = 0 C r , 0 < i < n C + C r , i = n P_i= \begin{cases} -C, i=0 \\ Cr, 0<i<n \\ C+Cr, i=n \end{cases} Pi= C,i=0Cr,0<i<nC+Cr,i=n
  2. 计算IRR: ∑ i = 0 n P i ( 1 + r a c t ) i = 0 \sum_{i=0}^{n}\frac{P_i}{(1+r_{act})^i}=0 i=0n(1+ract)iPi=0 − C + C r ( 1 ( 1 + r a c t ) 1 + . . . + 1 ( 1 + r a c t ) n − 1 ) + C + C r ( 1 + r a c t ) n = 0 -C+Cr(\frac{1}{(1+r_{act})^1}+...+\frac{1}{(1+r_{act})^{n-1}})+\frac{C+Cr}{(1+r_{act})^n}=0 C+Cr((1+ract)11+...+(1+ract)n11)+(1+ract)nC+Cr=0,简化得 ( r a c t − r ) = ( r a c t − r ) ( 1 + r a c t ) n (r_{act}-r)=(r_{act}-r)(1+r_{act})^n (ractr)=(ractr)(1+ract)n,得 I R R = 12 r IRR=12r IRR=12r
  3. 计算ARR:利息总和*12/C/n,求得 A P R = 12 r APR=12r APR=12r

等额本息

  1. P i = { − C , i = 0 C r ( 1 + r ) n ( 1 + r ) n − 1 , 0 < i < = n P_i= \begin{cases} -C, i=0 \\ C\frac{r(1+r)^n}{(1+r)^n-1}, 0<i<=n \end{cases} Pi={C,i=0C(1+r)n1r(1+r)n,0<i<=n
  2. 本质上等额本息的利息计算就是在考虑复利情况下计算出来的,所以 I R R = 12 r IRR=12r IRR=12r
  3. 计算APR:利息总和*12/C/n,求得 A P R = ( r ( 1 + r ) n ( 1 + r ) n − 1 − 1 n ) ∗ 12 APR=(\frac{r(1+r)^n}{(1+r)^n-1}-\frac{1}{n})*12 APR=((1+r)n1r(1+r)nn1)12;

等额本金

  1. P i = { − C , i = 0 C n + n + 1 − i n C r = 1 + ( n + 1 − i ) r n C , 0 < i < = n P_i= \begin{cases} -C, i=0 \\ \frac{C}{n}+\frac{n+1-i}{n}Cr=\frac{1+(n+1-i)r}{n}C, 0<i<=n \end{cases} Pi={C,i=0nC+nn+1iCr=n1+(n+1i)rC,0<i<=n
  2. 计算IRR: ∑ i = 0 n P i ( 1 + r a c t ) i = 0 \sum_{i=0}^{n}\frac{P_i}{(1+r_{act})^i}=0 i=0n(1+ract)iPi=0 − C + C ∑ i = 1 n ( 1 + ( n + 1 − i ) r n ) 1 ( 1 + r a c t ) i = 0 -C+C\sum_{i=1}^{n}(\frac{1+(n+1-i)r}{n})\frac{1}{(1+r_{act})^i}=0 C+Ci=1n(n1+(n+1i)r)(1+ract)i1=0,使用数值方法求解IRR,IRR与C无关,与r和n有关;实际计算可得,近似 I R R = 12 r IRR=12r IRR=12r;
  3. 计算APR:利息总和*12/C/n,求得 A P R = 6 r ( n + 1 ) n APR=\frac{6r(n+1)}{n} APR=n6r(n+1);

简单二分法求解IRR的程序

输入:现金流list;
输出:IRR;

def cal_irr(cash_flow_list):
    r_min, r_max = 0,2
    flag = False
    cnt = 0
    while((flag==False)&(cnt<=100)):
        cnt += 1
        r = (r_min + r_max) / 2
        npv = 0
        for ix,i in enumerate(cash_flow_list):
            npv += i/(1+r)**ix
        if abs(npv)<=0.00001:
            flag = True
            break
        else:
            if npv>0:
                r_min = r
            else:
                r_max = r
    return r*12

汇总

还款方式IRRAPR
一次性还本付息 ( ( 1 + r n ) 1 / n − 1 ) ∗ 12 ((1+rn)^{1/n}-1)*12 ((1+rn)1/n1)12 12 r 12r 12r
先息后本 12 r 12r 12r 12 r 12r 12r
等额本息 12 r 12r 12r ( r ( 1 + r ) n ( 1 + r ) n − 1 − 1 n ) ∗ 12 (\frac{r(1+r)^n}{(1+r)^n-1}-\frac{1}{n})*12 ((1+r)n1r(1+r)nn1)12
等额本金 ∑ i = 1 n 1 + ( n + 1 − i ) r n ( 1 + r a c t ) i − 1 = 0 \sum_{i=1}^{n}\frac{1+(n+1-i)r}{n(1+r_{act})^i}-1=0 i=1nn(1+ract)i1+(n+1i)r1=0的解 r a c t r_{act} ract乘以12, ≈ 12 r \approx12r 12r 6 r ( n + 1 ) n \frac{6r(n+1)}{n} n6r(n+1)

实验对比

  • 以月利率r(取0.005,0.01,0.03),期数n(取1、6、12、24、240),还款方式为自变量,APR和IRR为因变量,对比结果如如下。
  1. IRR计算结果:
    在这里插入图片描述

  2. APR计算结果:
    在这里插入图片描述

  3. r=1%,n=12时,各还款方式下IRR和APR对比:
    在这里插入图片描述

  4. r=1%,等额本金和等额本息还款方式下APR随着期数n的变化:
    (1)等额本金,APR随着n的增大单调递减,最终趋近6r;
    (2)等额本息,APR随着n的增大先下降再上升,最终趋近12r;
    (3)等额本息APR > 等额本息APR。
    在这里插入图片描述

  5. r=1%,本金C=30w,贷款36期(3年),月供流水对比:
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值