- 博客(858)
- 收藏
- 关注

原创 一文带你了解大模型部署的七种方案
近年来,随着大规模预训练模型(LLM)的蓬勃发展,如何将这些模型高效、可靠地投入生产成为业界关注的热点。不同团队对部署方案的需求差异巨大:有的注重零代码快速上线,有的追求极致的吞吐与低延迟,有的强调端边协同,有的倾向本地化轻量化。面对纷繁复杂的部署选型,本文汇总并深度解析七种代表性方案,帮助架构师与工程师们快速对比与决策。
2025-05-06 12:30:00
2779

原创 Qwen3发布,你要的本地部署教程来了
25年4月29日,阿里推出了最新的Qwen3模型,Qwen3是 Qwen 系列大型语言模型的最新成员,之前部署的还是Qwen2.5。Qwen3旗舰模型在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现均更加优异。另一方面,小型 MoE 模型。
2025-04-29 11:14:39
3592

原创 仓颉语言实现的智能体开发平台CangjieMagic体验与实战
AI Agent是智能体的基础,它以大模型为核心,集决策能力、记忆能力、工具调用能力为一体。现在主流的AI框架或者工具的开发语言是Python,比如langchain框架,它是一个大语言模型智能框架。现在Java生态对AI Agent的逐步完善,比如Langchain4J、Spring都对AI开发提供了支持。CangjieMagic是基于仓颉语言开发的一套AI智能体框架,Magic是Make Apps Grow Intelligence and Creativity的简写。
2025-04-22 10:08:07
1985
6

原创 Trae AI 全新功能 SSHremote助力开发者个人产品打造,高效构建全栈应用
在快速迭代的AI时代,程序员当仁不让的应该是一个弄潮儿,那么问题来了,AI可以给程序员带来什么?有些懂营销的利用信息差卖课挣钱,有产品出生的朋友,抓住AI机会找人做了一个AI小程序,产生了不错的流水。作为一名开发,AI除了智能帮助我们生成一些代码,还可以帮助我们做什么?十年前,有很多“就缺一名程序员”的项目,如今有了AI,一个程序员通过AI加持如何更进一步打造属于我们的作品?本文通过AI IDE帮助我们快速成为一名全栈工程师,快速打造属于我们自己的作品,做一个有作品的程序员。
2025-03-18 15:20:43
13957
94

原创 Ollama+CherryStudio本地部署拯救deepseek官方不可用
这里检查失败了,因为本地安装模型是1.5b,这里输入模型的时候有写全:deepseek-r1:1.5b,这时候点击确定后显示连接成功。好在deepseek将模型开源,并且有已经量化到可以在我们本地电脑部署,本文我们介绍从PC端到手机端一站式部署deepseek。首先需要安装ollama,从官网https://ollama.com/下载对应系统的安装包安装即可。接下来下载cherry studio,官网下载地址:https://cherry-ai.com/。接下来可以在手机使用本地离线模型聊天了。
2025-02-08 12:15:08
8384
3
原创 现代C++标准(C++11/14/17/20)在游戏开发中的演进与应用
现代C++标准(C++11/14/17/20)在游戏开发中带来了显著的演进与应用。C++11引入了自动类型推导、智能指针、移动语义等特性,提升了资源管理和并发性能。C++14通过泛型lambda和make_unique进一步简化了代码。C++17的编译期优化和结构化绑定增强了序列化和事件系统的效率。C++20的Concepts和Coroutine则革新了模板编程和异步资源加载。这些特性不仅提升了游戏引擎的性能和安全性,还增强了代码的可维护性。未来,C++23/26的反射和元编程将进一步推动游戏开发技术的进步
2025-05-13 12:00:00
386
原创 C++模板元编程与泛型编程在游戏开发中的实践
C++模板元编程与泛型编程在现代游戏开发中扮演着关键角色,尤其是在高性能和编译期优化方面。本文系统梳理了六大C++模板元编程技术,包括模板函数与类、类型萃取、特化与偏特化、变长模板参数、编译期循环与递归以及CRTP(Curiously Recurring Template Pattern),并结合游戏引擎中的实际应用案例,展示了这些技术如何提升代码的抽象性和性能。通过Mermaid图,文章清晰地展示了技术演进路径及其在游戏引擎中的具体应用,如ECS组件系统、资源管理器和序列化系统等。最终,文章强调了合理应用
2025-05-13 10:00:00
1000
原创 实时性与性能优化视角下的C++语法特性
本文从实时性与性能优化的角度,系统分析了C++的10大核心语法特性,包括值语义与引用语义、内联函数、constexpr、移动语义、数据局部性、内存对齐、分支预测、constexpr if、noexcept和lambda。通过Mermaid图展示了各特性的优化路径,并提供了实践指导。文章强调,在游戏引擎和高性能图形应用中,合理选择和使用这些特性可以显著提升代码的执行效率和稳定性。总体优化策略包括内联与编译期计算、移动语义、SoA布局与内存对齐、分支预测与noexcept等,旨在实现极致性能与稳定性。
2025-05-13 09:00:00
401
原创 C++内存管理详解:智能指针、内存池与内存泄漏排查
本文详细探讨了C++内存管理的三大核心议题:智能指针、内存池与内存泄漏排查。首先,C++提供了多种内存管理方式,包括栈分配、堆分配、智能指针和内存池。智能指针(如std::unique_ptr、std::shared_ptr和std::weak_ptr)是现代C++中自动管理内存的重要工具,能够有效减少内存泄漏风险。其次,内存池通过预分配连续内存块,提升频繁小对象分配的性能,并减少堆碎片化问题。最后,内存泄漏排查是保障程序稳定性的关键,文中介绍了多种调试工具(如Valgrind、AddressSanitiz
2025-05-13 08:00:00
304
原创 面向对象编程与游戏引擎架构设计
本文探讨了面向对象编程(OOP)在游戏引擎架构设计中的核心作用及其未来发展趋势。游戏引擎作为复杂的系统,涵盖渲染、物理、音频、AI等多个模块,OOP通过其封装性、继承性和多态性,帮助开发者有效组织和管理这些模块。文章详细介绍了OOP的三大特性,并结合实际代码示例展示了其在游戏开发中的应用。此外,文章还探讨了OOP与数据驱动设计(DDD)的结合,以及现代游戏引擎中OOP与多范式编程的融合趋势。总结指出,OOP不仅是游戏引擎设计的基础,也是应对未来性能挑战的关键技术之一。
2025-05-12 20:13:17
368
原创 Java 并发编程 20 大实战挑战与性能调优全景指南
《Java 并发编程 20 大实战挑战与性能调优全景指南》是一篇旨在帮助开发者深入理解并掌握 Java 并发编程的实战性文章。文章通过 20 个实战挑战、面试题集锦和性能调优清单,帮助读者从理论到实践全面提升并发编程能力。内容涵盖线程模型、锁机制、原子操作、并发集合、异步编排、并行计算等核心知识点,并提供了详细的代码示例和性能优化建议。文章特别强调工程落地和面试应对,帮助读者不仅理解并发编程的原理,还能在实际项目中高效应用。通过本文的学习,读者将能够体系化地掌握 Java 并发编程,并在面试中游刃有余。
2025-05-12 19:36:37
364
原创 HarmonyOS Next 用户通知服务Notification Kit介绍与实战
Notification Kit(用户通知服务)是HarmonyOS为开发者提供的本地通知发布工具,允许应用在客户端直接向用户推送通知。通知类型包括铃声、震动、横幅、锁屏、息屏、通知栏提醒等,类似于Android的通知栏功能。开发者可以通过Notification Kit创建通知,并在状态栏中显示图标,用户可通过下拉通知栏查看详情或执行操作。此外,Notification Kit还支持提醒式通知样式。 与Push Kit和Call Kit不同,Notification Kit允许开发者自定义通知,而Push
2025-05-12 07:41:34
828
25
原创 【每日学点HarmonyOS Next知识】获取页面堆栈对象、画布动画、安全按钮、图片组件修改图片颜色、设置弹窗只在当前页面展示
【每日学点HarmonyOS Next知识】获取页面堆栈对象、画布动画、安全按钮、图片组件修改图片颜色、设置弹窗只在当前页面展示
2025-05-11 16:52:37
648
原创 打造一次编写,处处运行的C++代码
本文通过20个实战示例,系统性地介绍了如何利用现代C++标准库和工具链实现跨平台开发,覆盖了从基础的系统调用到高级的网络编程、多线程、文件处理等关键领域。每个示例都结合了代码、原理和应用场景,帮助开发者理解如何在Windows、Linux、macOS等不同平台上编写一致且高效的C++代码。文章强调使用标准库和第三方库(如Boost.Asio、spdlog、Google Test等)来提升代码的可移植性和维护性,并推荐使用CMake作为跨平台构建工具。通过这些示例,开发者可以掌握跨平台开发的核心技能,提升工程
2025-05-11 11:32:17
496
原创 最全CentOS环境下MySQL数据库故障排查指南手册
本文旨在帮助运维和DBA工程师在CentOS操作系统下,对MySQL数据库进行系统化、全面的故障排查。文章涵盖MySQL核心架构原理、常见故障类型、日志分析、性能监控、参数优化、脚本实用示例等,以确保在生产环境中能够快速定位和解决问题。
2025-05-11 08:00:00
1009
2
原创 轻量化卷积网络设计:MobileNet 与 ShuffleNet
随着深度学习应用向移动设备和嵌入式场景扩展,模型推理速度和资源占用成为关键挑战。为此,研究者提出了轻量化卷积网络(Lightweight CNN),旨在保持准确率的同时显著降低计算量和参数量。本文系统剖析了两大经典轻量化架构:MobileNet系列和ShuffleNet系列。MobileNet通过深度可分离卷积(Depthwise Separable Convolution)大幅减少计算量,而ShuffleNet则通过组卷积(Grouped Convolution)和通道混洗(Channel Shuffle
2025-05-10 16:00:00
829
原创 深层网络的可训练性与残差学习
随着神经网络深度的增加,研究者发现“深度退化”问题,即网络层数增加时,模型性能反而下降,主要原因是优化困难而非过拟合。本文从理论、公式和代码实现三个维度探讨了深层网络的可训练性问题,并介绍了残差学习(Residual Learning)的突破。残差学习通过拟合残差函数而非直接拟合目标函数,利用跳跃连接(skip connection)稳定梯度传播,显著提升了深层网络的训练效果。实验表明,残差网络在CIFAR-10数据集上显著降低了训练误差并提高了测试精度。此外,本文还介绍了残差块的设计与实现,并探讨了残差学
2025-05-10 13:00:00
900
原创 经典 CNN 架构演进:LeNet 到 ResNet
卷积神经网络(CNN)的演进历程从LeNet-5的初步探索到ResNet的深度创新,展现了深度学习在图像识别领域的重大突破。LeNet-5作为最早的CNN模型,成功应用于手写数字识别,奠定了端到端图像识别的基础。AlexNet通过引入ReLU激活函数、Dropout正则化等创新,大幅提升了模型性能,推动了深度学习的复兴。VGGNet通过统一使用3x3卷积核,展示了深层网络的有效性。GoogLeNet则通过Inception模块实现了多尺度特征融合,显著降低了参数量。ResNet通过残差连接解决了深层网络的退
2025-05-10 08:35:35
692
原创 C++语言标准演进与对游戏开发的影响(C++11 ~ C++23)
C++作为游戏开发的核心语言,近十多年来通过多次标准更新显著提升了开发效率和性能。C++11引入了自动类型推导、智能指针、多线程编程和Lambda表达式,极大简化了代码并优化了性能。C++14进一步增强了Lambda表达式并优化了编译速度,提升了大型项目的开发效率。C++17扩展了标准库,尤其是文件系统库和内存模型改进,为资源管理和多线程编程提供了更好的支持。C++20则带来了模块化、概念和协程等革命性特性,极大提升了代码的可维护性和异步编程的效率。C++23虽然仍在发展中,但其对标准库和编译器的改进为未来
2025-05-09 18:00:00
690
原创 池化策略与空间金字塔池化:从基础到实战
池化策略在卷积神经网络中扮演着至关重要的角色,不仅能够有效降低计算复杂度,还有助于提升模型的泛化能力。传统的最大池化和平均池化方法虽然在多数任务中取得了显著成果,但在面对多尺度图像时,空间金字塔池化(SPP)展现了其独特的优势。SPP通过多尺度的池化层提取不同尺度的特征,有效提升了模型的鲁棒性和性能。
2025-05-09 14:00:00
512
原创 卷积运算与特征提取机制
卷积运算是深度学习中特征提取的核心机制,广泛应用于图像处理、语音识别等领域。本文系统剖析了卷积运算的数学原理、计算流程与实际应用。卷积通过滑动窗口(卷积核)对输入数据进行局部加权求和,提取空间关联特征。卷积核的类型决定了提取的特征类型,如边缘检测、平滑等。卷积运算的计算细节包括步幅、填充和多通道输入的处理。本文还提供了Python和TensorFlow的代码实现,展示了卷积运算的实际操作。卷积核能够自动学习不同层级的特征,从边缘、纹理到目标部件与语义。为了优化计算,常用的方法包括快速算法、深度可分离卷积和空
2025-05-09 12:00:00
915
原创 Vue.js 中的国际化(i18n)之态加载语言包
Vue i18n 是 Vue.js 的国际化插件,用于管理和切换不同语言的文本。它提供了一种简单而灵活的方式来在 Vue.js 应用程序中实现多语言支持。通过合理地使用 Vue i18n 和动态加载语言包,可以显著提升应用的国际化能力,优化用户体验。在实际开发中,应根据具体的应用场景和需求,灵活地应用这些技术。
2025-05-09 10:00:00
264
原创 数据预处理与增强策略实战
本文系统介绍了数据预处理与增强策略在深度学习与机器学习项目中的重要性及其实战应用。文章首先强调了数据质量与多样性对模型性能的关键作用,随后详细阐述了数据清洗、特征缩放、特征编码和数据划分等预处理技术。接着,针对图像、文本、语音和表格数据,分别列举了多种增强方法,并通过实战案例展示了这些策略在提升模型性能方面的显著效果。文章还探讨了增强策略的集成与自动化,以及未来发展趋势,如生成式增强和多模态增强。最后,文章强调了数据预处理与增强在构建高性能智能系统中的基础作用,并提供了相关工具与库的推荐。
2025-05-09 07:50:19
751
原创 激活函数的选择与改进
激活函数虽小,却深刻影响神经网络性能。从基础原理到应用实践,合理选择与改进激活函数,是构建高效深度学习模型的关键一环。随着深度学习场景不断拓展,激活函数的研究仍将持续演进,助力智能系统迈向更强表达力与更高泛化性。在未来的模型设计中,我们不仅需要理解“选择什么激活函数”,更需思考“为什么选择它”。
2025-05-08 14:00:00
797
1
原创 批量归一化与层归一化的原理与实践
在深度神经网络的发展过程中,随着模型层数的增加和结构的复杂化,模型训练面临梯度消失、梯度爆炸、收敛速度慢、参数初始化敏感等诸多挑战。为缓解这些问题,研究人员提出了“归一化(Normalization)”技术,通过标准化中间特征分布,稳定梯度传播,提高训练效率与模型性能。归一化方法已经成为深度学习模型设计中的“标配”操作,最典型的两类代表性方法分别是“批量归一化(Batch Normalization, BN)”与“层归一化(Layer Normalization, LN)”。
2025-05-08 12:00:00
651
原创 Vue.js 中的国际化(i18n)之配置语言包和切换语言
Vue i18n 是 Vue.js 的国际化插件,用于管理和切换不同语言的文本。它提供了一种简单而灵活的方式来在 Vue.js 应用程序中实现多语言支持。通过合理地使用 Vue i18n,可以显著提升应用的国际化能力,优化用户体验。在实际开发中,应根据具体的应用场景和需求,灵活地应用这些技术。
2025-05-08 10:00:00
353
原创 C++在游戏开发中的地位与优势
Unreal Engine(虚幻引擎)CryEngine(孤岛危机引擎)id Tech(毁灭战士引擎)C++以其卓越性能、底层控制力与成熟生态,奠定了现代游戏开发不可撼动的技术基石。尽管新兴语言不断挑战,C++凭借持续演进(现代C++标准)、工具链完善与工程经验积累,仍将在未来数十年内继续主导核心游戏引擎与性能关键模块的开发。对于立志成为高级游戏程序员与引擎架构师的开发者,扎实掌握C++,依然是通往顶尖技术殿堂的必由之路。
2025-05-08 08:32:57
1023
原创 深度模型的梯度消失与梯度爆炸问题
梯度消失与爆炸不仅是深度模型训练稳定性的技术挑战,更深刻影响模型设计范式与算法演进。我们系统性回顾了其数学根源、工程表现、主流缓解技术与应用实例,旨在帮助读者建立原理透彻、应用扎实的知识体系。掌握梯度流调控方法,不仅能提升模型性能与训练效率,更是迈向高级深度学习工程实践的必备技能。
2025-05-08 08:00:00
605
原创 Ollama 本地部署大模型的最佳实践全指南
随着人工智能技术的飞速发展,尤其是自然语言处理和计算机视觉领域,大型深度学习模型已成为现代科技的基础。Ollama 是一款高效的工具,能够让开发者方便地在本地机器上部署大模型,并快速实现实际应用。通过本指南,我们将一步步深入介绍如何通过 Ollama 部署和优化大模型,解决现实中的实际问题。无论是模型的下载、性能优化,还是安全管理和行业应用,Ollama 都为开发者提供了高效便捷的支持。本书不仅适合 AI 开发者,也适合技术团队在企业环境中实施 AI 解决方案的人员。
2025-05-08 07:53:55
915
原创 正则化技术剖析:L1、L2 与 Dropout
正则化(Regularization)技术作为深度学习中控制模型复杂度、防止过拟合的重要手段,贯穿于模型设计与训练的各个环节。在面对大规模模型与高维数据时,正则化不仅仅是一种“辅助工具”,更是一种影响泛化性能与训练效率的关键机制。本文将从原理推导、几何直观、数学公式与工程实现等多个角度,深入剖析 L1 正则化、L2 正则化与 Dropout 技术,并结合实际应用场景探讨它们的优势与适用条件。正则化通过对模型参数的约束,引入额外偏置(bias),以换取方差(variance)的降低,最终实现更好的泛化能力。
2025-05-08 02:00:00
505
原创 Vue.js 中的国际化(i18n)之使用 Vue i18n 实现国际化
Vue i18n 是 Vue.js 的国际化插件,用于管理和切换不同语言的文本。它提供了一种简单而灵活的方式来在 Vue.js 应用程序中实现多语言支持。通过合理地使用 Vue i18n,可以显著提升应用的国际化能力,优化用户体验。在实际开发中,应根据具体的应用场景和需求,灵活地应用这些技术。
2025-05-07 14:00:00
304
原创 失函数与优化算法全景:从 SGD 到 Adam
损失函数和优化算法构成深度学习模型性能之基石。通过深入理解原理、合理匹配应用场景,并结合工程实践优化策略,才能打造具备卓越性能与稳定性的智能系统。未来,我们仍需不断探索创新优化算法与智能损失函数设计,为深度学习应用打开更广阔天地。
2025-05-07 12:00:00
477
原创 感知机与多层前馈网络原理解析
典型任务:回归— 均方误差(MSE)L1N∑i1Nyi−yi2LN1i1∑Nyi−yi2分类— 交叉熵L−∑i1N∑k1KyiklogyikL−i1∑Nk1∑Kyiklogyik。
2025-05-07 07:41:37
610
原创 Openharmony 5.1.0 Release发布,一文带你了解更新内容
OpenHarmony 5.1.0 Release版本正式推出API 18。进一步增强ArkUI,提供更丰富的组件属性设置,支持更多精致动效,持续补充组件通过C API调用的能力;进一步增强媒体能力,提供更丰富的编解码能力、播控能力、媒体会话管理能力;进一步丰富了应用启动的细节设置能力;进一步增强分布式数据管理的UDMF、RDB的数据处理能力;进一步完善了标准Web能力。
2025-05-06 08:15:00
554
原创 深度学习的数学基石:概率统计与信息论
它们不仅指导我们如何在不确定环境中学习模型参数,还提供了评估模型信息量、衡量分布差异、设计优化目标的理论工具。本篇将深入探讨概率分布、极大似然估计与贝叶斯方法、信息熵与交叉熵、KL 散度与变分推断、互信息与信息瓶颈等核心概念,并结合深度学习典型场景(分类损失函数、生成模型、正则化、自监督学习等)进行细致剖析。在深度学习中,熵用于评估分类器输出分布的置信度,也用于蒸馏学习中评价教师–学生分布差异。类似地,分类网络也可对输出分布加熵正则,防止过度自信,从而提升泛化。它在自监督学习、对比学习中得到重要应用。
2025-05-05 10:30:00
792
原创 深度学习的数学基石:线性代数视角
在本篇中,我们将从最基础的向量与矩阵概念出发,逐步深入探讨矩阵运算、特征值分解、奇异值分解(SVD)、范数度量、随机矩阵理论、以及它们在梯度计算、卷积运算、批量归一化、模型压缩、参数初始化等关键环节中的应用。下一篇,我们将继续深入“深度学习的数学基石:概率统计与信息论视角”,在随机过程、极大似然估计、KL 散度、自监督学习等维度,为大家揭开更深层的数学奥秘。在深度学习中,数据通常以张量(Tensor)的形式存在,而最简单的张量形式即向量(一维张量)与矩阵(二维张量)。的作用之一是将行空间与列空间对调。
2025-05-05 09:00:00
938
原创 深度学习时代的机遇与挑战
深度学习开启了人工智能的新纪元,从理论到实践,我们既面临前所未有的机遇,也需迎接多重挑战。通过加强数据和算力支撑、创新算法与可解释性研究,以及构建完善的工程化流程,我们能够推动深度学习在更多领域落地,助力产业升级与社会进步。未来,随着多模态融合、自动化模型设计与类脑智能的不断突破,深度学习的边界将持续被拓展,我们也将见证更为智能和高效的技术应用。
2025-05-04 22:42:36
728
原创 【每日学点HarmonyOS Next知识】feed流图片大小、列表组件扩展、自定义弹窗、媒体监听、列表项交换
【每日学点HarmonyOS Next知识】feed流图片大小、列表组件扩展、自定义弹窗、媒体监听、列表项交换
2025-05-04 21:46:04
925
原创 【每日学点HarmonyOS Next知识】导航返回键隐藏、画布组件爱你滑动事件、可扩展文本、组件渐变、全屏自定义组件被引用
【每日学点HarmonyOS Next知识】导航返回键隐藏、画布组件爱你滑动事件、可扩展文本、组件渐变、全屏自定义组件被引用
2025-05-03 22:13:06
250
原创 【每日学点HarmonyOS Next知识】控件边缘模糊渐隐、对话框被键盘挤压、图片组件属性问题、像素转缓存、操作子组件
【每日学点HarmonyOS Next知识】控件边缘模糊渐隐、对话框被键盘挤压、图片组件属性问题、像素转缓存、操作子组件
2025-05-03 08:03:55
843
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人