动态规划-01背包问题详解 c++

本文详细解析了动态规划在解决01背包问题中的应用,阐述了闫氏dp分析法,介绍了如何根据物品的体积和价值确定在背包容量限制下能获得最大总价值的选取策略。通过分析得出动态规划状态转移方程:f[i][j] = max(f[i - 1][j], f[i - 1][j - v[I]] + w[i]),并提供了相应的C++实现代码。" 7698235,1237398,高分辨率TIFF图片生成技巧:从Excel和Visio到1000dpi,"['文档', '图像处理', 'Microsoft', 'visio', 'Excel']
摘要由CSDN通过智能技术生成

01背包问题

有 N件物品和一个容量为 V的背包,每件物品有各自的价值且只能被选择一次,要求在有限的背包容量下,装入的物品总价值最大

闫氏dp分析法

v[i]表示每个物品的体积,w[i]表示每个物品的价值

f[i][j]表示从前i个物品中选,总体积不大于j的选法的集合

对于第i个物品
若不选他,则相当于从前i-1个物品中选,总体积不大于j的选法 -> f[i-1][j]
若选他,先将第i个物品拿出来,且令j减去第i个物品的体积v[i]
-> 则相当于在前i-1个物品选,总体积不大于j - v[i]的选法 -> f[i-1][j-v[i]] -> 加上w[i]

则f[i][j] = max(f[i - 1][j], f[i - 1][j - v[I]] + w[i])

动态规划 - 1)状态表示f[i][j] - 1) 集合: 所有从前i个物品中选,且总体积不超过j的集合
                           - 2)属性: max

        - 2)状态计算 集合划分 - 1) 不包含第i个物品f[i - 1][j]
                            - 2) 包含第i个物品: 先从前i - 1个物品选,总体积不超过j - v[i],再加上w[i]
                                --> f[i][j] = f[i - 1][j];
                                    if ( j >= v[i] ) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值