01背包问题
有 N件物品和一个容量为 V的背包,每件物品有各自的价值且只能被选择一次,要求在有限的背包容量下,装入的物品总价值最大
闫氏dp分析法
v[i]表示每个物品的体积,w[i]表示每个物品的价值
f[i][j]表示从前i个物品中选,总体积不大于j的选法的集合
对于第i个物品
若不选他,则相当于从前i-1个物品中选,总体积不大于j的选法 -> f[i-1][j]
若选他,先将第i个物品拿出来,且令j减去第i个物品的体积v[i]
-> 则相当于在前i-1个物品选,总体积不大于j - v[i]的选法 -> f[i-1][j-v[i]] -> 加上w[i]
则f[i][j] = max(f[i - 1][j], f[i - 1][j - v[I]] + w[i])
动态规划 - 1)状态表示f[i][j] - 1) 集合: 所有从前i个物品中选,且总体积不超过j的集合
- 2)属性: max
- 2)状态计算 集合划分 - 1) 不包含第i个物品f[i - 1][j]
- 2) 包含第i个物品: 先从前i - 1个物品选,总体积不超过j - v[i],再加上w[i]
--> f[i][j] = f[i - 1][j];
if ( j >= v[i] ) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);