题目
B市和T市之间有一条长长的高速公路,这条公路的某些地方设有路标,但是大家都感觉路标设得太少了,相邻两个路标之间往往隔着相当长的一段距离。为了便于研究这个问题,我们把公路上相邻路标的最大距离定义为该公路的“空旷指数”。
现在政府决定在公路上增设一些路标,使得公路的“空旷指数”最小。他们请求你设计一个程序计算能达到的最小值是多少。请注意,公路的起点和终点保证已设有路标,公路的长度为整数,并且原有路标和新设路标都必须距起点整数个单位距离。
输入输出格式
输入格式:
第1行包括三个数L、N、K,分别表示公路的长度,原有路标的数量,以及最多可增设的路标数量。第2行包括递增排列的N个整数,分别表示原有的N个路标的位置。路标的位置用距起点的距离表示,且一定位于区间[0,L]内。
输出格式:
输出1行,包含一个整数,表示增设路标后能达到的最小“空旷指数”值。
输入输出样例
输入样例#1:
101 2 1
0 101
输出样例#1:
51
说明
公路原来只在起点和终点处有两个路标,现在允许新增一个路标,应该把新路标设在距起点50或51个单位距离处,这样能达到最小的空旷指数51。
50%的数据中,
2≤N≤100,0≤K≤100
2
≤
N
≤
100
,
0
≤
K
≤
100
100%的数据中,
2≤N≤100000,0≤K≤100000
2
≤
N
≤
100000
,
0
≤
K
≤
100000
100%的数据中,
0<L≤10000000
0
<
L
≤
10000000
分析
一道裸的二分题,直接二分答案即可,水的一批。
上代码
#include<bits/stdc++.h>
using namespace std;
int al[100010],n,ll,k,ans;
bool check(int x){
int anss=0;
for(int i=2;i<=n;i++)
anss=anss+(al[i]-al[i-1]-1)/x;
if(anss>k)
return 0;
return 1;
}
int main(){
scanf("%d%d%d",&ll,&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&al[i]);
int l=0,r=ll*2;
while(l<=r){
int mid=l+r>>1;
if(check(mid))
ans=mid,r=mid-1;
else
l=mid+1;
}
printf("%d\n",ans);
return 0;
}