实现分析 - Enemy

启动addEnemy的循环
Listing 5.18  GameplayLayer.m init method additions
[self schedule:@selector(addEnemy) interval:10.0f];


 addEnemy 作为对外的入口 - 内部统一用 createObjectOfType 来处理
 如果XXX (不再加入Enemy了),unschedule这个循环

 Listing 5.17  GameplayLayer.m addEnemy method
-(void)addEnemy {
CGSize screenSize = [CCDirector sharedDirector].winSize;
    RadarDish *radarDish = (RadarDish*)
     [sceneSpriteBatchNode getChildByTag:kRadarDishTagValue];
if (radarDish != nil) {
if ([radarDish characterState] != kStateDead) {
            [self createObjectOfType:kEnemyTypeAlienRobot
              withHealth:100
              atLocation:ccp(screenSize.width * 0.195f,
              screenSize.height * 0.1432f)
              withZValue:2];
        } else {
            [self unschedule:@selector(addEnemy)];
        }
    }
}



下面是CreateObjectOfType的一部分

-(void)createObjectOfType:(GameObjectType)objectType withHealth:(int)initialHealth atLocation:(CGPoint)spawnLocation withZValue:(int)ZValue {
  if (kEnemyTypeRadarDish == objectType) {
       CCLOG(@"Creating the Radar Enemy");
       RadarDish *radarDish =  [[RadarDish alloc] initWithSpriteFrameName:@"radar_1.png"];
       [radarDish setCharacterHealth:initialHealth];
       [radarDish setPosition:spawnLocation];
       [sceneSpriteBatchNode addChild:radarDish z:ZValue tag:kRadarDishTagValue];
       [radarDish release];

    } else if (kEnemyTypeAlienRobot == objectType) {
      CCLOG(@"Creating the Alien Robot");
      EnemyRobot *enemyRobot =  [[EnemyRobot alloc] initWithSpriteFrameName:@"an1_anim1.png"];
        [enemyRobot setCharacterHealth:initialHealth];
        [enemyRobot setPosition:spawnLocation];
        [enemyRobot changeState:kStateSpawning];
        [sceneSpriteBatchNode addChild:enemyRobot z:ZValue];
        [enemyRobot setDelegate:self];
        [enemyRobot release];
    } else if (kEnemyTypeSpaceCargoShip == objectType) {
    ......
 

创建了enemy后,它的状态会是 kStateSpawning




基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值