题目描述
本题目要求一元二次方程ax^2+bx+c=0的根,结果保留2位小数。
输入
输入在一行中给出3个浮点系数a、b、c,中间用空格分开。
输出
根据系数情况,输出不同结果:
1)如果方程有两个不相等的实数根,则每行输出一个根,先大后小;
2)如果方程有两个不相等复数根,则每行按照格式“实部+虚部i”输出一个根,先输出虚部为正的,后输出虚部为负的;
3)如果方程只有一个根,则直接输出此根;
4)需要考虑系数为0的情况,如果系数都为0,则输出"Zero Equation";
5)如果a和b为0,c不为0,则输出"Not An Equation"。
样例
样例输入1
2.1 8.9 3.5
样例输出1
-0.44
-3.80
AC代码
#include <stdio.h>
#include <math.h>
int main()
{
double a, b, c;
scanf("%lf %lf %lf", &a, &b, &c);
// 检查特殊情况
if (a == 0 && b == 0 && c == 0)
{
printf("Zero Equation"); // 方程全为零的情况
}
else if (a == 0 && b == 0 && c != 0)
{
printf("Not An Equation"); // a和b都为零,c不为零的情况
}
else
{
// 处理一般情况
if (a != 0)
{
double d = b * b - 4 * a * c;
if (d > 0)
{
double x1, x2;
x1 = (-b + sqrt(d)) / (2 * a);
x2 = (-b - sqrt(d)) / (2 * a);
printf("%.2lf\n", x1);
printf("%.2lf\n", x2);
}
else if (d < 0)
{
if (b != 0)
{
double t = -b / (2 * a);
double t1 = sqrt(-d) / (2 * a);
printf("%.2lf%+.2lfi\n", t, t1);
printf("%.2lf%+.2lfi\n", t, -t1);
}
else
{
double t1 = sqrt(-d) / (2 * a);
printf("%.2lf%+.2lfi\n", 0.0, t1);
printf("%.2lf%+.2lfi\n", 0.0, -t1);
}
}
else
{
printf("%.2lf\n", -b / (2 * a));
}
}
else
{
if (b != 0)
{
printf("%.2lf\n", -c / b);
}
else
{
if (c == 0)
{
printf("Zero Equation\n"); // a为零,b和c不为零的情况
}
else
{
printf("Not An Equation\n"); // a和b都为零,c不为零的情况
}
}
}
}
return 0;
}