Sdut PTA 21级数据结构与算法实验1——顺序表(C语言版)

28 篇文章 2 订阅
14 篇文章 24 订阅

7-1 顺序表的建立及遍历

读入n值及n个整数,建立顺序表并遍历输出。

输入格式:

读入n及n个整数

输出格式:

输出n个整数,以空格分隔(最后一个数的后面没有空格)。

输入样例:

在这里给出一组输入。例如:

4
-3 10 20 78

输出样例:

在这里给出相应的输出。例如:

-3 10 20 78
#include<stdio.h>
int main()
{
    int n;
    scanf("%d",&n);
    int a[n];
    int i;
    for(i=0;i<n;i++)
    {
        scanf("%d",&a[i]);
    }
    for(i=0;i<n;i++)
    {
        if(i==n-1)
        printf("%d",a[i]);
        else printf("%d ",a[i]);
    }
}

 7-2 递增有序顺序表的插入

实验目的:1、掌握线性表的基本知识 2、深入理解、掌握并灵活运用线性表。3、熟练掌握线性表的存储结构及主要运算的实现
已知顺序表L递增有序,将X插入到线性表的适当位置上,保证线性表有序。。

输入格式:

第1行输入顺序表长度,第2行输入递增有序的顺序表,第3行输入要插入的数据元素X。

输出格式:

对每一组输入,在一行中输出插入X后的递增的顺序表。

输入样例:

在这里给出一组输入。例如:

5
1 3 5 7 9
6

输出样例:

在这里给出相应的输出。例如:

1,3,5,6,7,9,
#include<stdio.h>
int main()
{
    int n;
    scanf("%d",&n);
    int a[n+1];
    int i,x,j,t;
    for(i=0;i<n+1;i++)
    {
        scanf("%d",&a[i]);
    }
    for(i=0;i<n+1;i++)
    {
        for(j=0;j<n-i;j++)
        {
            if(a[j]>a[j+1])
            {
                t=a[j];
                a[j]=a[j+1];
                a[j+1]=t;
            }
        }
    }
    for(i=0;i<n+1;i++)
    {
        printf("%d,",a[i]);
    }
    return 0;
}

 7-3 顺序表(删除)

已知一组数据,采用顺序存储结构存储,其中所有的元素为整数。设计一个算法,删除元素值在[x,y]之间的所有元素

输入格式:

输入包含三行数据,第一行是表中元素个数,第二行是顺序表的各个元素,第三行是区间x和y。

输出格式:

删除元素值在[x,y]之间的所有元素后,输出新的顺序表。(最后无空格)

输入样例:

在这里给出一组输入。例如:

10
55 11 9 15 67 12 18 33 6 22
10 20

输出样例:

在这里给出相应的输出。例如:

55 9 67 33 6 22
#include<stdio.h>
int main()
{
    int n;
    scanf("%d",&n);
    int a[n];
    int i,flag[n],x,y;
    for(i=0;i<n;i++)
    {
        scanf("%d",&a[i]);
        flag[i]=0;
    }
    scanf("%d %d",&x,&y);
    for(i=0;i<n;i++)
    {
        if(a[i]>=x&&a[i]<=y) flag[i]=1;
    }
    int k=0,b[n];
    for(i=0;i<n;i++)
    {
        if(flag[i]==0)
        {
            b[k]=a[i];
            k++;
        }
    }
    for(i=0;i<k;i++)
    {
        if(i==k-1)printf("%d",b[i]);
        else printf("%d ",b[i]);
    }
    return 0;
}

 7-4 数组元素循环右移n位

从键盘接收两个整数m和n,分别表示一维整型数组的元素个数,和要向移动的位数。已知0<m<=100,以及n>0。

在用户输入m和n后,第二行输入相应个数的数组元素。

程序要实现的功能是,让数组元素往右移动n位

例如,数组的5个元素是:1,2,3,4,5。

往右移动1位后:5,1,2,3,4

往右移动2位后:4,5,1,2,3

输入格式:

第一行输入两个整数,第二行输入数组元素。

输出格式:

移动后,数组的每一个元素,注意每个数组元素后有且仅有一个空格。

输入样例:

第一行的数据5和2,表示数组容量为5,让数组元素往右移动2个位置。

第二行是数组的每一个元素的值。

5 2
1 2 3 4 5 

输出样例:

输出移动后的数组元素值,注意每个元素后有且仅有一个空格。

4 5 1 2 3 
#include<stdio.h>
void inversion(int *a,int s,int e)
{
    int i,j,t;
    int m=(s+e)/2;
    for(i=s,j=e;i<m,j>m;i++,j--)
    {
        t=a[i];
        a[i]=a[j];
        a[j]=t;
    }
}
int main()
{
    int n,m,i;
    scanf("%d %d",&n,&m);
    int a[n];
    for(i=1;i<=n;i++)
      {
          scanf("%d",&a[i]);
      }
    if(n>=m)
      {
          inversion(a,1,n);
          inversion(a,1,m);
          inversion(a,m+1,n);
      }
    if(n<m)
      {
          int l;
          l=m%n;
          inversion(a,1,n);
          inversion(a,1,l);
          inversion(a,l+1,n);
      }
    for(i=1;i<=n;i++) printf("%d ",a[i]);
    return 0;
}

 7-5 单词逆置

输入一个可能包含若干(至少1个)单词的句子(可以假设每个单词之间有且仅有一个空格,标点符号视为单词的组成部分),输出每个单词逆置后的英文句子(参看样例输出)。

输入格式:

首先输入一个正整数T,表示测试数据的组数,然后是T组测试数据。每组测试数据输入一个字符串(长度不超过80),表示英文句子。

输出格式:

对于每组测试,输出每个单词逆置后的英文句子。

输入样例:

1
emoclew era uoY

输出样例:

welcome are You
#include<stdio.h>
#include<string.h>
void inversion(char *a,int s,int e)
{
    int i,j;
    char t;
    int m=(s+e)/2;
    for(i=s,j=e;i<m,j>m;i++,j--)
    {
        t=a[i];
        a[i]=a[j];
        a[j]=t;
    }
}
int main()
{
    int t;
    scanf("%d",&t);
    getchar();
    while(t--)
	{
		int n;
        char a[81];
        gets(a);
        n=strlen(a);
        int i,begin=0;
        for(i=0;i<n;i++)
        {
               if((a[i]==' ')&&i!=n-1)
              {
                inversion(a,begin,i-1);
                begin=i+1;
              }
               if(i==n-1)
             {
                inversion(a,begin,i);
             }
        }
        puts(a);
    }
    return 0;
}

 7-6 最大子列和问题

给定K个整数组成的序列{ N1​, N2​, ..., NK​ },“连续子列”被定义为{ Ni​, Ni+1​, ..., Nj​ },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。

本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:

  • 数据1:与样例等价,测试基本正确性;
  • 数据2:102个随机整数;
  • 数据3:103个随机整数;
  • 数据4:104个随机整数;
  • 数据5:105个随机整数;

输入格式:

输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。

输出格式:

在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入样例:

6
-2 11 -4 13 -5 -2

输出样例:

20
#include<stdio.h>
int a[100001]={0};
int sum=0;
int max(int a,int b)//max函数比较大小 
{
	if(a>b) return a;
	else return b;
}
int max_function(int l,int r)//分治求最大字段和函数 
{
	if(l==r)//若左等于右,表示递归结束 
	{
		if(a[l]>0)//如果数据大于零,就将sum初始化为此数据
			sum=a[l];
		else
			sum=0;//如果小于0,和为0 
	}
	else//分治函数的主要部分 
	{
		int mid=(l+r)/2;//将数组一分为二进行分治,mid为数组下标中间值 
		int leftres=max_function(l,mid);//左半部分遍历 
		int rightres=max_function(mid+1,r);//右半部分遍历 
		int s=0;
		for(int i=l;i<=r;i++)//遍历结束后,从最左边开始,到最右边,不断将sum与s进行比较 
		{
			if(s+a[i]>0)//s相当于从最左加到最右,分治法需要有三个结果进行比较,左半部分的sum,右半部分的sum,以及一部分处于左边,一部分处于右边的子段构成的子段和s 
				sum=max(sum,s=s+a[i]);
			else
				s=0;
		}
		sum=max(sum,leftres);//sum与s比较完之后与左半部分比较 
		sum=max(sum,rightres);//sum与左半部分比较完后与右半部分比较 
	}
	return sum;//返回最大值 
}
int main()
{
	int n,res;
	scanf("%d",&n);
	for(int i=0;i<n;i++)
	{
		scanf("%d",&a[i]);
	}
	res=max_function(0,n-1);
	printf("%d",res);
	return 0;
}

7-7 一元多项式的乘法与加法运算

设计函数分别求两个一元多项式的乘积与和。

输入格式:

输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。

输出格式:

输出分2行,分别以指数递降方式输出乘积多项式以及和多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。零多项式应输出0 0

输入样例:

4 3 4 -5 2  6 1  -2 0
3 5 20  -7 4  3 1

输出样例:

15 24 -25 22 30 21 -10 20 -21 8 35 6 -33 5 14 4 -15 3 18 2 -6 1
5 20 -4 4 -5 2 9 1 -2 0
#include<stdio.h>
#define max 10000
int a1[max];
int a2[max];
int mul[max];
int sum[max];
int main(){
	int t,f;//以下操作实现以指数值为数组底数,以相应系数为数组值
	scanf("%d",&t);
	int xi,mi;
	while(t--){
		scanf("%d %d",&xi,&mi);
		a1[mi]=xi;
	}
	scanf("%d",&f);
	while(f--){
		scanf("%d %d",&xi,&mi);
		a2[mi]=xi;
	}
	for(int i=0;i<max;i++){//以下操作实现相同叠加指数系数乘积之和
		if(a1[i]){
			for(int j=0;j<max;j++){
				if(a2[j]){
					mul[i+j]=mul[i+j]+a1[i]*a2[j];
				}
			}
		}
	}
	for(int i=0;i<max;i++){//以下操作实现相同指数系数加和
		if(a1[i])
		   sum[i]+=a1[i];
	}
	for(int i=0;i<max;i++){
		if(a2[i])
		   sum[i]+=a2[i];
	}
	int count=0;//判定条件
	for(int i=max-1;i>=0;i--){//一定要从大到小输出,因为要求指数递降
		if(mul[i]){	
			if(count!=0)//如果mul存在且count不为0,输出空格
		    printf(" ");
		    printf("%d %d",mul[i],i);
		    count++;//相当于实现了第一组数字前提无空格,后续输出空格+数字+空格+数字的形式
		}
	}
	if(count==0)
	printf("0 0");//0多项式输出0 0
	printf("\n");
        count=0;
	for(int i=max-1;i>=0;i--){//加法解释与乘法差不多
		if(sum[i]){	
			if(count!=0)
		    printf(" ");
			printf("%d %d",sum[i],i);
		    count++;
		}
	}
	if(count==0)
	printf("0 0");
	return 0;
}

 7-8 合并有序数组

分数 10

全屏浏览题目

切换布局

作者 伍建全

单位 重庆科技学院

给定2个非降序序列,要求把他们合并成1个非降序序列。假设所有元素个数为N,要求算法的时间复杂度为O(N)。

输入格式:

输入有4行。
第1行是一个正整数m,表示第2行有m个整数,这些整数构成一个非降序序列,每个整数之间以空格隔开。第3行是一个正整数n,表示第4行有n个整数,这些整数也构成一个非降序序列,每个整数之间以空格隔开。

输出格式:

把第2行的m个整数和第4行的n个整数合并成一个非降序序列,输出这个整数序列。每个数之间隔1个空格。

输入样例:

6
1 3 6 6 8 9  
4
2 4 5 7

输出样例:

1 2 3 4 5 6 6 7 8 9 
#include<stdio.h>
void quick(int a[],int l,int r)
{
    int i=l,j=r,k=a[l];
    if(i>=j) return ;
    while(i<j)
    {
        while(i<j&&k<=a[j]) j--;
        a[i]=a[j];
        while(i<j&&k>=a[i]) i++;
        a[j]=a[i];
    }
    a[i]=k;
    quick(a,l,i-1);
    quick(a,i+1,r);
}
int main()
{
    int m,n;
    scanf("%d",&m);
    int c[m];
    for(int i=0;i<m;i++)
    {
        scanf("%d",&c[i]);
    }
    scanf("%d",&n);
    int b[n];
    for(int i=0;i<n;i++)
    {
        scanf("%d",&b[i]);
    }
    int a[m+n];
    for(int i=0;i<m;i++)
    {
        a[i]=c[i];
    }
    for(int i=0;i<n;i++) 
    {
        a[m+i]=b[i];
    }
    quick(a,0,m+n-1);
    for(int i=0;i<n+m;i++)
    {
        printf("%d ",a[i]);
    }
    return 0;
}

 c语言虽然熟悉,但还是得玩好链表(我以前说的话都是xx)

### 回答1: 递增有序顺序表的插入是指在一个已经按照从小到大的顺序排列好的顺序表中插入一个新的元素,并且保持顺序表的有序性。插入的过程需要先找到插入位置,然后将插入位置之后的元素依次后移,最后将新元素插入到插入位置。这样就可以保证顺序表仍然是有序的。 ### 回答2: 递增有序顺序表的插入指的是将一个元素按照从小到大的顺序插入到已经排好序的顺序表中。首先,我们需要找到该元素应该插入的位置。可以采用二分查找的方式,将元素与中间位置的元素进行比较,如果该元素比中间位置的元素小,则在左半部分查找,否则在右半部分查找,直到找到插入位置为止。 找到插入位置后,需要将插入位置及其后面的元素向右移动一个位置,为新元素腾出空间。然后将新元素插入到插入位置。 程序实现时,要注意越界问题和数组长度的变化。如果顺序表已经满了,需要进行扩容操作,将数组长度增加一倍,并将原有元素拷贝到新的数组中。 递增有序顺序表的插入是一个比较常见的算法问题,适用于需要维护有序性的数据结构,如搜索树和有序图等。在实际应用中,我们可以基于该算法实现常见的排序算法,如插入排序和归并排序等。 不过,在实际应用中,由于顺序表的插入操作需要对插入位置及其后面的元素进行移动,因此效率较低。如果需要频繁地进行插入操作,建议使用链表等数据结构。 ### 回答3: 顺序表是一种使用连续的存储空间存储数据的数据结构,其中元素按照递增有序排列。在递增有序顺序表中插入元素的操作,需要保证插入后的顺序表仍然是递增有序的。 假设要在递增有序顺序表中插入元素x,首先需要通过二分查找找到插入位置p。具体步骤如下: 1.设置low=1,high=length,其中length表示当前顺序表中元素个数。 2.当low<=high时执行以下操作: (1)设置mid=(low+high)/2,即找到中间位置。 (2)如果x小于等于第mid个元素,那么令high=mid-1;否则令low=mid+1。 3.查找结束后,p=low。此时顺序表中第p个元素是第一个大于等于x的元素。 接下来需要把元素x插入到p位置,具体步骤如下: 1.依次把第p个元素到第length个元素后移一个位置,空出第p个位置。 2.将元素x插入到第p个位置。 3.顺序表长度加1。 以上操作后,递增有序顺序表中就成功插入了元素x,并仍然保持递增有序。需要注意的是,如果插入的元素x已经存在于顺序表中,那么需要根据具体要求进行覆盖或者忽略操作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CRAEN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值