java实现简单二叉树

Java 专栏收录该内容
24 篇文章 4 订阅

觉得有用,一键三连

二叉树基本知识:

一、树的定义

树是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。

 

 

 

树具有的特点有:

(1)每个结点有零个或多个子结点

(2)没有父节点的结点称为根节点

(3)每一个非根结点有且只有一个父节点

(4)除了根结点外,每个子结点可以分为多个不相交的子树。

 

树的基本术语有:

若一个结点有子树,那么该结点称为子树根的“双亲”,子树的根称为该结点的“孩子”。有相同双亲的结点互为“兄弟”。一个结点的所有子树上的任何结点都是该结点的后裔。从根结点到某个结点的路径上的所有结点都是该结点的祖先

 

结点的度:结点拥有的子树的数目

叶子结点:度为0的结点

分支结点:度不为0的结点

树的度:树中结点的最大的度

层次:根结点的层次为1,其余结点的层次等于该结点的双亲结点的层次加1

树的高度:树中结点的最大层次

森林:0个或多个不相交的树组成。对森林加上一个根,森林即成为树;删去根,树即成为森林。

 

二、二叉树

1、二叉树的定义

二叉树是每个结点最多有两个子树的树结构。它有五种基本形态:二叉树可以是空集;根可以有空的左子树或右子树;或者左、右子树皆为空。

 

 

 

2、二叉树的性质

性质1:二叉树第i层上的结点数目最多为2i-1(i>=1)

性质2:深度为k的二叉树至多有2k-1个结点(k>=1)

性质3:包含n个结点的二叉树的高度至少为(log2n)+1

性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1

 

3、性质4的证明

性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1

证明:因为二叉树中所有结点的度数均不大于2,不妨设n0表示度为0的结点个数,n1表示度为1的结点个数,n2表示度为2的结点个数。三类结点加起来为总结点个数,于是便可得到:n=n0+n1+n2 (1)

由度之间的关系可得第二个等式:n=n0*0+n1*1+n2*2+1即n=n1+2n2+1 (2)

将(1)(2)组合在一起可得到n0=n2+1

 

三、满二叉树、完全二叉树和二叉查找树

1、满二叉树

定义:高度为h,并且由2h-1个结点组成的二叉树,称为满二叉树

 

 

 

2、完全二叉树

定义:一棵二叉树中,只有最下面两层结点的度可以小于2,并且最下层的叶结点集中在靠左的若干位置上,这样的二叉树称为完全二叉树。

特点:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。显然,一棵满二叉树必定是一棵完全二叉树,而完全二叉树未必是满二叉树。

 

 

 

面试题:如果一个完全二叉树的结点总数为768个,求叶子结点的个数。

由二叉树的性质知:n0=n2+1,将之带入768=n0+n1+n2中得:768=n1+2n2+1,因为完全二叉树度为1的结点个数要么为0,要么为1,那么就把n1=0或者1都代入公式中,很容易发现n1=1才符合条件。所以算出来n2=383,所以叶子结点个数n0=n2+1=384。

总结规律:如果一棵完全二叉树的结点总数为n,那么叶子结点等于n/2(当n为偶数时)或者(n+1)/2(当n为奇数时)

 

3、二叉查找树

定义:二叉查找树又被称为二叉搜索树。设x为二叉查找树中的一个结点,x结点包含关键字key,结点x的key值计为key[x]。如果y是x的左子树中的一个结点,则key[y]<=key[x];如果y是x的右子树的一个结点,则key[y]>=key[x]

 

 

 

在二叉查找树种:

(1)若任意结点的左子树不空,则左子树上所有结点的值均小于它的根结点的值。

(2)任意结点的右子树不空,则右子树上所有结点的值均大于它的根结点的值。

(3)任意结点的左、右子树也分别为二叉查找树。

(4)没有键值相等的结点。

要求:将一个数组中的数以二叉树的存储结构存储,并遍历打印。

import java.util.ArrayList;
import java.util.List;

public class bintree {
    public bintree left;
    public bintree right;
    public bintree root;
//    数据域
    private Object data;
    //    存节点
    public List<bintree> datas;

    public bintree(bintree left, bintree right, Object data){
        this.left=left;
        this.right=right;
        this.data=data;
    }
//    将初始的左右孩子值为空
    public bintree(Object data){
        this(null,null,data);
    }

    public bintree() {

    }

    public void creat(Object[] objs){
        datas=new ArrayList<bintree>();
        //        将一个数组的值依次转换为Node节点
        for(Object o:objs){
            datas.add(new bintree(o));
        }
//        第一个数为根节点
        root=datas.get(0);
//        建立二叉树
        for (int i = 0; i <objs.length/2; i++) {
//            左孩子
            datas.get(i).left=datas.get(i*2+1);
//            右孩子
            if(i*2+2<datas.size()){//避免偶数的时候 下标越界
                datas.get(i).right=datas.get(i*2+2);
            }

        }

    }
//先序遍历
public void preorder(bintree root){
    if(root!=null){
        System.out.println(root.data);
        preorder(root.left);
        preorder(root.right);
    }

}
//中序遍历
    public void inorder(bintree root){
        if(root!=null){
            inorder(root.left);
            System.out.println(root.data);
            inorder(root.right);
        }

    }
//    后序遍历
    public void afterorder(bintree root){
        if(root!=null){
            System.out.println(root.data);
            afterorder(root.left);
            afterorder(root.right);
        }

    }

    public static void main(String[] args) {
        bintree bintree=new bintree();
        Object []a={2,4,5,7,1,6,12,32,51,22};
        bintree.creat(a);
        bintree.preorder(bintree.root);
    }
}
要求:从键盘输入数,存为二叉树结构并打印。
import java.util.Scanner;

public class btree {
    private btree left,right;
    private char data;
    public btree creat(String des){
        Scanner scanner=new Scanner(System.in);
        System.out.println("des:"+des);
        String str=scanner.next();
        if(str.charAt(0)<'a')return null;
        btree root=new btree();
        root.data=str.charAt(0);
        root.left=creat(str.charAt(0)+"左子树");
        root.right=creat(str.charAt(0)+"右子树");
        return root;
    }
    public void midprint(btree btree){
//        中序遍历
        if(btree!=null){
            midprint(btree.left);
            System.out.print(btree.data+"  ");
            midprint(btree.right);
        }
    }
    public void firprint(btree btree){
//        先序遍历
        if(btree!=null){
            System.out.print(btree.data+" ");
            firprint(btree.left);
            firprint(btree.right);
        }
    }
    public void lastprint(btree btree){
//        后序遍历
        if(btree!=null){
            lastprint(btree.left);
            lastprint(btree.right);
            System.out.print(btree.data+"  ");
        }
    }

    public static void main(String[] args) {
        btree tree = new btree();
        btree newtree=tree.creat("根节点");
        tree.firprint(newtree);
        System.out.println();
        tree.midprint(newtree);
        System.out.println();
        tree.lastprint(newtree);
    }
}

输出结果:

des:根节点
a
des:a左子树
e
des:e左子树
c
des:c左子树
1
des:c右子树
1
des:e右子树
b
des:b左子树

1
des:b右子树
1
des:a右子树
d
des:d左子树
f
des:f左子树
1
des:f右子树
1
des:d右子树
1
a e c b d f        先序
c  e  b  a  f  d   中序
c  b  e  f  d  a   后序

二叉树的遍历次序:

前序顺序是根节点排最先,然后同级先左后右;中序顺序是先左后根最后右;后序顺序是先左后右最后根。

例如:

    

比如上图二叉树遍历结果

    前序遍历:ABCDEFGHK

    中序遍历:BDCAEHGKF

    后序遍历:DCBHKGFEA

分析中序遍历如下图,中序比较重要(java很多树排序是基于中序,后面讲解分析)


我是一条,一个在互联网摸爬滚打的程序员。

道阻且长,行则将至。大家的 【点赞,收藏,关注】 就是一条创作的最大动力,我们下期见!

注:关于本篇博客有任何问题和建议,欢迎大家留言!

©️2021 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值