trapping rain water

题目;

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

For example, 
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.


The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

解答:

找到最长的那块木板,假设其下标为maxIdx。

分别从左侧和右侧向其逼近。

在左侧逼近过程中:

如果一个木板的长度小于已经遍历的最大长度max,即max>该木板<maxIdx,所以在该木板位置能存max - 该木板长度的水量(左右两侧各有一个木板长于它)。

如果一个木板的长度大于已经遍历的最大长度max,即max<该木板<maxIdx,所以在该木板位置不能存水(因为左右两侧只有一个木板(maxIdx)长于它)。更新max值。

右侧逼近过程与左侧相似。

代码:

class Solution {
public:
    int trap(int A[], int n) {
        int i;
		int maxline, max;
		int water = 0;
		maxline = 0;
		max = A[0];
		for(i = 1; i < n; i++)
		{
			if(A[i] > max)
			{
				max = A[i];
				maxline = i;
			}
		}
		max = A[0];
		for(i = 1; i < maxline; i++)
		{
			if(A[i] < max)
			{
				water += max - A[i];
			}
			else
			{
				max = A[i];
			}
		}
		max = A[n-1];
		for(i = n-2; i > maxline; i--)
		{
			if(A[i] < max)
			{
				water += max - A[i];
			}
			else
			{
				max = A[i];
			}
		}
		return water;
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值