题目;
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
解答:
找到最长的那块木板,假设其下标为maxIdx。
分别从左侧和右侧向其逼近。
在左侧逼近过程中:
如果一个木板的长度小于已经遍历的最大长度max,即max>该木板<maxIdx,所以在该木板位置能存max - 该木板长度的水量(左右两侧各有一个木板长于它)。
如果一个木板的长度大于已经遍历的最大长度max,即max<该木板<maxIdx,所以在该木板位置不能存水(因为左右两侧只有一个木板(maxIdx)长于它)。更新max值。
右侧逼近过程与左侧相似。
代码:
class Solution {
public:
int trap(int A[], int n) {
int i;
int maxline, max;
int water = 0;
maxline = 0;
max = A[0];
for(i = 1; i < n; i++)
{
if(A[i] > max)
{
max = A[i];
maxline = i;
}
}
max = A[0];
for(i = 1; i < maxline; i++)
{
if(A[i] < max)
{
water += max - A[i];
}
else
{
max = A[i];
}
}
max = A[n-1];
for(i = n-2; i > maxline; i--)
{
if(A[i] < max)
{
water += max - A[i];
}
else
{
max = A[i];
}
}
return water;
}
};