- 博客(20)
- 资源 (2)
- 收藏
- 关注
转载 CIC滤波器传递函数的存在性问题
CIC滤波器,也即是通常所说的级联积分梳状滤波器,是多速率采样信号处理中最常用的滤波器之一,本文要讨论的问题是,CIC滤波器存在传递函数吗? 在回答这个问题之前,我们先来回顾一下CIC滤波器的基本概念。图1(a)给出了一个抽样因子为R的通用2阶CIC抽样滤波器框图。由图中可以看出,两个级联积分器接在两个级联梳状滤波器之后。图1(b)给出了抽样因子为R的CIC滤波器的标准框图。
2012-08-17 23:05:16 198
转载 傅立叶变换网文精粹:让傅立叶变换从理性蜕变到感性
傅立叶变换网文精粹:让傅立叶变换从理性蜕变到感性 按语:互联网资源,找不到原文的初始出处,有版权问题请联系博主。 转自:http://blog.163.com/niujiashu@126/blog/static/1002930422011102501211199/ 1、我们都知道,LTI系统对谐波函数的响应也是相同频率的谐波函数,只是幅度和相位可能不同罢了,因
2012-08-17 23:02:24 78
转载 图像傅立叶变换的物理意义
图像傅立叶变换的物理意义 按语:互联网资源,找不到原文的初始出处,有版权问题请联系博主。 转自:http://blog.163.com/niujiashu@126/blog/static/1002930422011102501211199/ 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对
2012-08-17 23:01:57 107
转载 傅立叶变换的物理意义
傅立叶变换的物理意义 按语:互联网资源,找不到原文的初始出处,有版权问题请联系博主。 转自:http://blog.163.com/niujiashu@126/blog/static/1002930422011102501211199/ 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明
2012-08-17 23:01:29 97
转载 人体感知与线性系统
人体感知与线性系统 线性系统是经典信号处理的基石之一。如果没有系统线性性的假设,数字信号处理的很多内容,如数字滤波、频谱分析等,可能都需要重新改写。系统的线性性是如此重要,以致于我们常常视而不见,或者说视其为理所当然。就像空气对我们是如此重要,以致于我们也常常将其忽略。这也正是老子所谓的“大音无声,大象无形”。 事实上,很多常见的系统都
2012-08-17 22:53:02 103
转载 相频响应的物理意义
相频响应的物理意义 研究一个线性时不变系统(LTI),不仅可以用时域上的冲激响应h(n)来进行描述,也可以用频域上的频率响应H(w)来进行描述,而H(w)通常是一个复数,可分别用幅频响应和相频响应来表示。 幅频响应好理解,从物理概念上,幅频响应反映的是系统对不同频率信号的选择性。相频响应也有对应的非常明确的物理意义吗?回答是有的。从物理概念上,相频响应反
2012-08-17 22:48:46 229
转载 线性时不变系统的特征信号
线性时不变系统的特征信号 在一般的语言环境中,“特征”指的是“一事物异于他事物的特点”,这种特点具有某种不变性,因而能很好地刻画事物本身。华中科技大学老校长,中科院院士杨叔子先生在赏析北宋诗人王安石的名句“春分又绿江南岸,明月何时照我还”时,曾经提到诗中的“绿”字用得非常巧妙,因为“绿”是描述春天的特征不变量,因而能很传神地刻画春天的特点。 在信
2012-08-17 22:48:19 250
转载 从系统响应的观点看西瓜挑选
从系统响应的观点看西瓜挑选 单位冲激响应h(n)及其傅里叶变换H(w)是描述一个线性时不变(LTI)系统的有效方式。它不仅可以用来描述因果性和稳定性等LTI系统的现实约束条件,还为我们认识系统提供了一种非常简单的测试手段。很多情况下,系统就像是一个黑匣子,等待我们去解开其中的奥秘。在可能的情况下,我们只需要对系统施加一个最简单的单位冲激信号,只要观察和记录其对
2012-08-17 22:47:52 113
转载 数字信号处理大厦的入口
以FFT算法的出现为标志,数字信号处理作为一门独立的学科开始登上科学的舞台。其后在通信、雷达、声纳、语音、图像、地震、航天及生物医学工程等许多应用领域数字化处理需求的推动下,伴随着微电子学系统的复杂性和先进程度的不断提高,数字信号处理的理论和实现都取得了飞跃式的发展,并且反过来以自己的方式推动着某些应用领域的革命性变化。比如说在通信领域,数字信号处理技术、微电子技术和光纤传输技术的结合,正以一种真
2012-08-17 22:46:42 70
转载 压缩感知,信号处理的新方向
压缩感知,信号处理的新方向 在数字信号处理中,最基本的限制条件是奈奎斯特-香农采样定理(Nyquist–Shannon sampling theorem),即采样频率至少要大于模拟信号最高频率的2倍,才能保证模拟信号在数字化过程中信息没有损失,所有的数字信号处理技术都是在此基础上展开。在很多的应用场合,如医学成像,模式识别,无线通信,雷达遥感等领域,高采样率带来的问题已经成为制约信
2012-08-17 22:43:05 126
转载 高斯的遗憾
高斯的遗憾 快速傅立叶变换(FFT)是一种实现高效DFT运算的快速算法。以1965年库利(J. W. Cooley)和图基(J. W. Tukey)发表在“Mathematics of Computation”杂志上的题为“An Algorithm for the MachineCalculation of Complex Fourier Series”的论文
2012-08-17 22:32:07 170
转载 特征向量的物理意义
特征向量的物理意义 长时间以来一直不了解矩阵的特征值和特征向量到底有何意义(估计很多兄弟有同样感受)。知道它的数学公式,但却找不出它的几何含义,教科书里没有真正地把这一概念从各种角度实例化地进行讲解,只是一天到晚地列公式玩理论——有个屁用啊。 根据特征向量数学公式定义,矩阵乘以一个向量的结果仍是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,
2012-08-17 22:19:35 136
转载 匹配滤波器的物理解释
匹配滤波器的物理解释 匹配滤波器是一种非常重要的滤波器,广泛应用与通信、雷达等系统中。匹配滤波器的推导数学公式看起来很负责,在通信系统、雷达系统、随机信号处理等很多教科书中都有详细的推导过程。最开始的时候,顺着推导的过程,基本也能推导下来,但对其内在的涵义却无半点认识,可以说完全淹没在公式推导的海洋了。 张直中老师可以说是新中国雷达事业的开拓者之
2012-08-17 22:18:36 147
转载 相关性与误差能量最小准则
相关性与误差能量最小准则 相关是用来描述信号相似性的概念。两个信号越相似,则可以说这两个信号的相关性越强。误差能量信号最小准则是信号处理中最常用的准则之一。比如说维纳滤波中,使用的就是误差能量最小准则。实际上,信号处理中常听到的最优滤波器,都是在某一准则之下的最优。那么,为什么误差能量最小准则使用最为广泛呢?它和信号的相关性又有什么样的关系呢?
2012-08-17 22:17:46 137
转载 信号相似性的描述
信号相似性的描述 在很多的应用场合,经常要描述两个信号的相似性。比如在雷达的信号检测中,要比较所接收的信号是否就是发射信号的延时。有时候,甚至还要描述一个信号本身的相似性,比如在语音编码中,要通过语音信号本身的相似性,来预测下一时刻的信号值。 我们知道,在信号处理中,用相关函数来描述信号的相似性。描述两个信号之间的相似性用互相关函数;描述信号本身
2012-08-17 22:17:08 137
转载 信号处理与数学分析
信号处理与数学分析 在一般的讲授数字信号基本理论的书中,数学推导往往占据了很大的篇幅。更有甚者,通篇是数学推导,难得有文字的说明和物理的解释。这往往给人一种错觉,数字信号处理的基本理论是不是必须要通过数学公式才能描述?信号处理是不是只是数学分析的一个分支? 确实,数字信号处理中的很多概念,从理论层面的严格说明的话,如同其他学科一样,必须要借助数学
2012-08-17 22:16:34 108
转载 线性相位重要性的理解
线性相位重要性的理解 在数字滤波器的设计和应用当中,我们经常能看到线性相位的身影,而且,几乎无一例外地强调,线性相位非常重要。但线性相位到底是怎么个重要法呢?在哪些场合应用比较多呢?很多地方都语焉不详,造成很多初学者对这个概念的重要性几乎没什么理解。这里举两个实例来说明。 第一个实例与音乐厅有关。我们很多人不一定去过音乐厅,但大都去过电影院。这里
2012-08-17 22:15:38 234
转载 啸叫的信号处理解释
啸叫的信号处理解释 啸叫是日常生活中经常遇到的现象。比如在上课的时候,老师胸前挂着话筒讲课,时不时可能就会出现一下啸叫。再比如开会的时候,主席台上某个人正在讲话,冷不丁可能出现一声啸叫。啸叫不能说有多大的危害,但大家一般情况下不喜欢啸叫应该是没有疑问的。粉丝追星时的啸叫则是另外一回事。 从声学的角度看,话筒拾音的音响系统,都有反馈啸叫的可能。这个
2012-08-17 22:12:54 171
转载 数字信号处理芯片的发展和应用
数字信号处理芯片的发展和应用 数字信号处理作为信号和信息处理的一个分支学科,已渗透到科学研究、技术开发、工业生产、国防和国民经济的各个领域,取得了丰硕的成果。对信号在时域及变换域的特性进行分析、处理,能使我们对信号的特性和本质有更清楚的认识和理解,得到我们需要的信号形式,提高信息的利用程度,进而在更广和更深层次上获取信息。数字信号处理系统的优越性表现为:1.灵活性好
2012-08-17 22:11:05 133
转载 卷积的物理意义
卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢? 卷积表示为y(n) = x(n)*h(n)。使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来的信号。同理,x(n)的对应
2012-08-17 22:06:43 87
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人