直接举例如下:
from django_pandas.io import read_frame
years = CurrentYear.objects.all()
years_pd = read_frame(qs=years)
注意,转换的对象必须是QuerySet类型。不能是单个数据对象,get()函数获得的对象不能用来转换。还有两个需要注意的地方
1)DateField类型转换为pandas数据类型
如果获取的表格QuerySet对象中有字段类型是DateField类型,则转换为pandas的dataframe类型后,是2020-01-02这样类型的字符串。你必须转换为pandas中的datetime类型。
2) model字段中有choices选项
很奇怪的现象。models.py中
Workdays表有一个字段isoweekday_number。
Class Workdays(models.Model):
tmplist=((1,'周一'), (2,'周二'), (3,'周三'), (4,'周四'), (5,'周五'), (6,'周六'), (7,'周日'))
isoweekday_number=models.IntegerField(verbose_name='星期',choices=tmplist)
它的模型中使用了choices属性。数据库中存储的是整数值1,2,3等 (Int型)。但转换为pandas后,显示的是choices属性对应的“周一、周二、周三”,而不是数据库中的1,2,3.这点要注意。
本文介绍了如何使用`django-pandas`库将Django的QuerySet对象转换为pandas DataFrame,强调转换过程中的两个关键点:1) DateField类型的字段会以字符串形式出现,需转换为datetime;2) 模型字段如果有choices属性,在转换后会显示选择项的文本而非数据库存储的数值。这对于数据处理和分析时需要注意数据类型的正确性和一致性。
2946

被折叠的 条评论
为什么被折叠?



