【Django】Model query转换成Dataframe时,如何减少50%的内存消耗

在Django框架中,通过Model查询获取数据库数据并转换为DataFrame时,默认方法可能导致大量内存消耗。通过选择必要的column并使用values_list()代替values(),可以显著降低内存使用。values_list()将数据以无column名的元组形式返回,适用于大规模数据集,能有效减少50%的内存峰值。在转换DataFrame时需手动指定column信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通常我们在Django framework里去取DB数据做处理时,会用values()这个function,然后直接转换成dataframe。假设需要取整个table的数据,简单粗暴的写法如下:

    querySet = models.xxx.objects.all().using("db_name").values()
    df = pd.DataFrame(list(querySet))

这是一种最方便的写法,但却是最耗memory的。那么我们如何改进这一操作?

首先我们可以做的是去掉不需要的column,只选择有用的column。如果目标table有很多column,而你只需要其中一两个的话,这一缩减可以节省很多的资源消耗。

    querySet = models.xxx.objects.all()
### 分数微分在光谱影像处理中的应用及实现方法 #### 应用背景 分数微分作为一种数学工具,在图像处理领域具有独特的优势。其核心在于能够有效提取图像的边缘、纹理和其他局部特征,这对于多光谱图像融合以及其他复杂的光谱影像处理任务尤为重要[^1]。 #### 图像预处理 对于多光谱图像而言,预处理段至关重要。这一过程通常包括去噪、对比度增强以及图像配准等操作。这些步骤旨在提高原始数据质量,从而为后续的分数微分运算提供可靠的基础输入。 #### 实现方法 ##### 基于Matlab分数微分实现 在实际应用中,可以借助Matlab内置函数(如`dfilt`)完成分数微分运算。具体来说,该技术通过对预处理后的多光谱图像施加分数微分算子,进一步突出目标区域内的细节信息。这种处理方式有助于提升图像的空间分辨率和视觉效果。 以下是基于Matlab的一个简单代码示例: ```matlab % 定义分数参数 alpha 和 beta alpha = 0.5; % 次调整 beta = 0.8; % 加载并读取多光谱图像 I = imread('multispectral_image.jpg'); grayImage = rgb2gray(I); % 使用 dfilt 函数创建分数滤波器对象 d = fdesign.fracdelay(alpha); Hd = design(d, 'lagrange'); % 对灰度图执行分数微分 filteredImage = filter(Hd.Numerator, 1, double(grayImage)); % 显示结果 figure; subplot(1,2,1); imshow(grayImage, []); title('Original Image'); subplot(1,2,2); imshow(uint8(filteredImage), []); title('Fractional Differentiated Image'); ``` ##### 结合分数样条小波变换应用 除了传统的分数微分外,还可以引入更先进的分数样条小波变换(FSSWT)。这种方法不仅继承了传统小波变换的优点,还融入了分数微分的能力,使其更适合用于复杂场景下的光谱影像分析。例如,在多光谱与全色图像融合过程中,先分别对两种类型的图像实施分数样条小波分解,再依据特定规则(如像素级加权平均或基于小波系数的选择策略)进行重构,最终获得高质量的融合产物[^2]。 #### 后续处理与优化 为了进一步改善融合图像的效果,还需要对其进行逆变换及相关后置修正工作,比如再次去除可能残留的噪声干扰或者适当调节整体亮度分布等。这一步骤同样不可或缺,因为只有这样才能真正达到预期的技术指标要求。 #### 工具库支持 值得注意的是,Python生态体系下也存在强大的科学计算库——SciPy,它可以作为替代方案之一参与到上述流程当中。特别是其中的积分/微分模块(`scipy.integrate`),提供了丰富的接口供开发者调用,进而简化开发难度的同时提高了程序运行效率[^3]。 ```python from scipy import integrate import numpy as np def fractional_derivative(x, order=0.5): """ 计算一维信号 x 的分数导数 """ n = len(x) result = [] for k in range(n): term = sum([((-1)**j * integrate.quad(lambda t: (k-t)**(-order-1), j-1, j)[0]) for j in range(k+1)]) result.append(term) return np.array(result) # 测试用例 input_signal = np.linspace(0, 10, num=100) output_signal = fractional_derivative(input_signal, order=0.75) print(output_signal[:10]) ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值